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The search for chemical evidence of prebiological processes in ancient and extra- 

tenrestrial geologic samples has led to the need for criteria which can be used to distingish 

organic matter of abiogenic and biogenic origin. A review of the types of hydrocarbons 

reported in the literature to be synthesized from simple carbon containing gases suggests 

that at least four hydrocarbon characteristics have potential as criteria: (1 ) A, complex 

mixture of predominantly cyclic aliphatic hydrocarbons which yield a humplike gas 

chromatographic distribution pattern, (2) a repetitive sequence of monomethyl branched 

paraffin and olefin isomers in between intense n-alkane peaks, the intensity of all peaks 

decreasing exponentially with molecular weight, (3) a mixture of two and t h e e  ring 

arenes consisting of even numbers of carbon atoms, and (4) a positive correlaltigan of the 

C/N ratio of all hydrocarbon types with temperature of formation. This survey also suggests 

that the relative distribution of hydrocarbon types in an abiogenic mixture can provide in- 

formation about the conditions under which it was synthesized. For instance, the f i~s t  

listed characteristic appears to indicate that methane was the reactant, whle the second 

indicates carbon monoxide. 

The usefulness of the aliphatic hydrocarbon characteristics in determining the oragiin 

of bitumens in unusual geologi~ environments is evaluated. A suhvey of bitumens from New 

Nmaden Mine, California; Yellowstone National Park, Wyoming; Mountsorrel, England, 

and Asphalt Lake, Trinidad suggests that complex mixtures of predominantlji cychc 

aliphatic isomers are common to most of these unusual bitumens, yet there is evidence 

that they are of biological origin. To determine what processes could generate these Isomer 

mixtures in biologically derived material, a bitumen deposit in Windy Knoll, England was 

studied in detail. Here the bitumens are directly associated with lead-zinc ore deposits and 



previous studies of the area suggest that they have been thermally altered. 

Three distinct bitumens were identified. One, a brittle brown solid, contains hydro- 

carbons very similar to  those of the overlying shales. The other two, a viscous oil and a 

brittle, black solid, contain hydrocarbons exhibiting the complex distribution pattern 

observed in the previously surveyed bitumen deposits. Since the hydrocarbons isolated 

from associated, massive fluorite deposits were almost identical to those of the under- 

lying limestone and overlying shales, alteration of the hydrocarbons due to hydrothema1 

activity or water transport is considered unlikely. On the basis of the indirect evidence 

of a high nitrogen content, presence of unsaturated hydrocarbons, and suitability of the 

environment for bacterial growth, it is suggested that selective bacterial oxidation of the 

aliphatic hydrocarbons is the main process responsible for the complex humplike alkane 

distribution patterns at Windy Knoll. A geologic history for the deposit is postulated, 

which involves a two phase introduction of bitumens. Each phase is suggested to have 

begun as a pulse of warm saline fluids migrating along the shale-limestone unconfol-mity 

passed through the topographic high at Windy Knoll. Microbial oxidation of the bitun~ens 

may have taken place during the deposition process or more likely as a recent, secondary 

oxidation process. 

On the basis of the Windy Knoll study, it is concluded that there are subtle differences 

between altered biogenic and abiogenic aliphatic hydrocarbons. These differences make it 

possible to use their characteristics as an indicator for the abiogenic origin of organic matter 

especially if there is no evidence for bacterial activity in the samples. The information 

obtainable from the characteristics of the hydrocarbons in the Murchison carbonaceous 

chondrite is given as an example of how the results of this study can be applied. 



Chemical Eidence for Life in Ancient 
and Extraterrestrial Rocks 

Organic geochemistry began with man's first attempts to  relate the chemical 

constitution of petroleum to various biologic and inorganic sources. From this search for 

the origin of petroleum emerged the concept that the presence of certain compounds such 

as porphyrins (Treibs, 1934) or certain characteristics such as a low C1 /C" carbon Eso- 

tope ratio (Silverman and Epstein, 1961) was a useful indication of the biogenicity of the 

host organic mixture. 

A new phase of organic geochemistry evolved as attempts were made to find evidence 

in rocks that defined the time at which life began on earth, and the extent to which it 

occurred in our solar system (Ponnamperuma, 1965). These new quests extended geo- 

chemical studies to early Precambrian rocks and carbonaceous chondrites. Study of both 

types of samples placed new and stringent requirements on the type of markers which 

might serve to indicate the biogenic origin of the associated organic matter: for instance, 

the presence of amino acids is not a good criterion because amino acids are readily syn- 

thesized in electric discharges through methane, ammonia and water (Miller, 1953). 

Optical activity would be a better criterion, but it is difficult to detect when the amount 

of material is small (Hayatsu, 1966). 

A promising new class of biological markers gained prominence at this time: hydro- 

carbons with the isoprenoid structure (McCarthy and Calvin, 1965). Their acceptance was 

based on the facts that hydrocarbons are the most stable of organic compounds, that in- 

strumental techniques are available for their complete characterization on the micropam 



level, that they are present in one form or another in a wide variety of plants and afimals, 

and that they had not been synthesized in any chemical evolution model expe~iments. The 

search for these compounds in Precambrian rocks by several groups of k&ly s~Eled ana- 

lytical chemists revealed the presence of open chained and cyclic isoprenoids in dl major 

Precambrian rocks (Barghoom, et al., 1965; Oro and Nooner, 1967; Belsky, et al., 1969; 

I-Ian and Calvin, 1969) and in carbonaceous chondrites (Hayes, 1969). By this time, it 

appeared certain that life had existed as far back in the earth's history as 3.2 bilifion yeas,  

and that the evolutionary process must have been initially very rapid. 

This intensive search for remnants of life in rocks generated several problems con- 

cerning the interpretation of this type of chemical evidence. It is generally aclcnowledged 

that chemical evolution preceded the evolution of biological systems (Ponnampemma, 

1964). Therefore it seems reasonable to expect that there might exist rocks old enou& to 

contain abioge~cally formed organic matter. Would the absence of isoprenoids charac- 

terize such material? Precambrian rocks containing abiogenic material could plausibly also 

contain chemical remnants of an emerging biological system. Would such a ""cntaminated" 

mixture be recognized? 

At first, the most direct way to answer these questions appeared to be the develop- 

ment of abiogenic markers analogous to biogenic markers, by identifying stable hydrocarbons 

which do not occur in living systems, but which can be synthesized in hypothetical chemicd 

evolution models. This solution never gained importance because nomal dlagenesis of bio- 

logical compounds generates many entirely new isomers. For instance, the hydrocarbon, 

adamantane, found in petroleum (Landa and Machacek, 1933) is not present in Eking 

systems. This point raised another: could biogenic material undergoing diagenesis or some 

other form of alteration lose the characteristics which distinguish it from abioge~c matter? 

A better approach to the problem of identifying naturally occurring abiogenric organic 

matter appeared to lie in the study of material synthesized in various chemical evolution 



experiments, and in the development of characteristics which were not dependent on the 

presence or absence of a specific compound. And, indeed, initial studies showed that syn- 

thetic, aliphatic hydrocarbon mixtures yielded a hump-like distribution pattem upon gas 

chromatography which was very distinct from those of most sediment derived aliphatic 

hydrocarbons. Even more promising was the finding that the aliphatic hydrocarbons 

isolated from a bitumen reported in the literature as abiogenic were distributed in a manner 

very similar to the synthetic analogues (Ponnamperuma and Pering, 1966). 

In spite of the unanswered questions, there was a brief period of time when it appeared 

that organic geochemistry had achieved its goals: traces of life in the earth's oldest rocks 

had been found, and some means to distinguish organic matter of biological and abrioio@cal 

origin had been developed. But no sooner had this goal been reached, than accumulatin.ag 

evidence based partly on geologic considerations began to erode the credibility of these 

findings. 

Amino acids in recent sediments were found to racemize at such a rate that they 

would be racemic in about two million years (Kvenvolden and Peterson, 19'70). Ycl amEne 

acids in Precambrian rocks were optically active (Kvenvolden, Peterson and Pollack, 1969). 

Permeability studies showed that enough water could flow through Precambrian rocks $0 

introduce all the observed organic constituents (Smith, Schopf and Kaplan, 1970). In 

addition, the mobility of isoprenoids was demonstrated by the detection of these com- 

pounds in a wide variety of graphites (Gelpi, Nooner and Oro, 1970a), in dust (Gelpi, 

Nooner and Oro, 1970b), and in the outer layers of a meteorite which hit the earth only 

twenty-four hours previously (Han, Simoneit, Burlingame and Calvin, 1970). The use ef 

isoprenoids as the sole criterion for the biogenicity of a sample was further question~ed 

when these isomers were fonned in several abiogenic syntheses (McCarthy and Calvin, 

1967; Munday, Pering and Ponnampemma, 1968; and Studier, Nayatsu and Andeas, 

1968). The validity of using hydrocarbons to characterize abiogenic material came into 



further doubt when the apparently abiogenic bitumen was found to be optically active 

(Pering, unpublished results). 

Two important points emerged from this period of intense analytical work. One was 

that the chemical differences between biogenic and abiogenic hydrocarbons are very sikbfle 

and still needed to  be defined. The second was that the significance of any organic cam- 

pounds in rocks must be interpreted in close conjunction with all available information 

about the geologic environment in which they are found. As these points were becomrng 

apparent, this thesis study was undertaken. 

Plan of Thesis 

The primary purpose of this thesis is to define some of the characteristics o f  hydro- 

carbons which can be used as criteria for abiogenicity. An important part of the study is 

to determine how biologically derived hydrocarbons develop abiogenic characteristics 

There are four parts to this study. The first, presented in Chapter 11, is a review of 

the types of hydrocarbons which can be synthesized from simple carbon containing gases. 

This review provides a basis for formulating the characteristics which are potentially useful 

as criteria for abiogenicity. In addition, the energy conditions employed in these syntheses 

provide a basis for defining favorable geologic environments for the formation of abrogenlc 

hydrocarbons. The second, Chapter 111, presents a series of brief studies of several bitumens 

selected from those reported in the literature as possibly abiogenic. These studies were 

carried out to determine whether any of the experimentally defined abiogenlc character- 

istics were unique to these natural materials. The third and most extensive aspect of the 

study, presented in Chapter IV, is a survey of the hydrocarbon distribution patterns 11-1 a 

bitumen deposit whose genesis appears linked with hydrothermal mineralization processes 

in the surrounding sediments. Its purpose is t o  determine what natural processes will alter 

the biogenic characteristics of sediment derived, hydrocarbons so that they resemble ablogenlc 



material. The last and concluding part of the thesis summarizes the characteristics w1aicl.s 

appear to be the most valuable as criteria and discusses these characteristics in the light 

of those exhibited by the hydrocarbons in the recently fallen Murchison carbonaceous 

chondrite. 



SWTNESIS OF ABIOGENIC HYDROCARBONS 

Introduction 

The non-biologic processes by which hydrocarbons can be synthesized may be elkher 

equilibrium or non-equilibrium processes. In nature, equilibrium processes are important 

in systems such as those associated with the atmosphere at high temperatures, the solar 

nebulae, rock metamorphism, and vulcanism. The types of hydrocarbons which WOII~L?  be 

formed under such conditions have been predicted by Dayhoff and Eck (1  966) on the 

basis of the free energies of selected compounds. For a system containing C. H and 0 they 

predict that methane is the dominant lcjw moleculai weight hydi-ocarbon foamed, and 

that arorhatic hydrocarbons will predominate by as much as 1020 over paraffinic hydro- 

carbons, if hydrogen is depleted in the system. 

But marly geologic processes irivolve predominantly non-eqbilibrium reaction. A 

meteorite hitting the earth, for instance, would not have time tt, equilibrate. The types of 

hydrocarbons which would be formed in these environments will thus differ from those 

predicted by Dayhoff and Eck, and are best defined by laboratory syntheses utilizieag the 

various possible energy sources available within our solar system (Ponnampert~ma, 19643. 

This section is a review of these reactions as observed in the laboratory. It has a dual. 

purpose: to define the characteristics of synthetic hydrocarbons as potential criteria for 

the abiogenicity of naturally occurring bitumens, and to specify the most favorable con- 

ditions foi. the non-equilibrium synthesis of hydrocarbdm on earth. 



Types of Hydrocarbons Synthesized 

Aromatic Hydrocarbons 

Considering the thernlodynamic stability of polynuclear aromatic hydrocarbons 

(Dayhoff, Lippincott and Eck, 1964), it is not surprising that they are foamed in a vadety 

of high energy syntheses, where reactions can proceed rapidly in both directions. Simu- 

lated cosmochemical synthesis involving passage of methane over silica gel at 1000" 6: 

produces mainly one, two and three ring arene hydrocarbons (Oro and Wan, 1966); and 

the discharge of high intensity arcs through methane to simulate lightning produces a 

similar, but less condensed set of compounds wKch include benzene and toluene 

(Ponnampemma and Woeller, 1964). In another cosrnochemical simulation expewanet~t, 

carbon monoxide and hydrogen heated to 900" G in the presence of powdered meleonte 

produces a wide range of aromatic compounds including pyrene and naphthalene (Studier, 

Hayatsu, and Anders, 1968). There is even some indication that calcium carbonate may 

react to yield polynuclear aromatics when heated t o  500" C under high hydrogen pres- 

sures (Giardini, Salotti and Lakner, 1968). 

The temperature range favorable to the formation of aromatic compounds is rela- 

tively restricted. This is probably because formation of these compounds involves the high 

energy methine (CH) radical which apparently does not appear below 700" - 800" C. At 

temperatures above 1000" C carbon, hydrogen and acetylene become the domlnant prod- 

ucts. Very high temperatures do not necessarily mean that aromatic hydrocarbons will 

not be formed, however, because acetylene will polymerize if i t  is cooled slowly thrsragh 

1 000' C. Such a process may explain the fact that the hydrocarbons formed upon passmg 

methane through silica gel at 1 000" C are composed almost completely of even numbers 

of carbon atoms (Oro and Han, 1966). 



Aliphatic Hydrocarbons 

Saturated.-Free energy calculations have shown that aliphatic hydrocarbons are noit 

themodynamically stable in any hydrogen deficient dystem (Eck, et  al., 1966). This is 

reflected in the fdct that alihhatic compounds are formed only in low energy, non- 

equilibrium syntheses. Corona discharges through methane, which siniulates a possible 

primitive eafth situation, produce acyclic and mono-cyclic hydrocarbons containing a 

large numbet bf short chain btanches (Ponnampehmh and doeller, 1964). The gas 

chromatographic distribution patterri exhibited by these aliphatic hydrocarbons re- 

sembles a Gaussian distribution curve because the number of isomers is so great that they 

are not resolved on existing columns (Ponnamperuma and Pering, 1966). A very similar 

mixture of aliphatic hydrocarbons is produced when solid methatie is irradiated wit11 

Cobalt 60 rays at 77' K in a simulated Jovian process ( b ~ v i s  and Libby, 19641. The average 

number of carbon atoms iri the hyklrocarbons formed in both of these syntheses is about 

fifteen, but the number varies inversely with the teinperature of 'the reaction in the latter 

expefirnen t. 

A much different set of aliphatic hydrocarbons is prbduced by the reactibn of carbon 

~ o n o k i d e  and hydrogen at moderately low temperatures, in the well known Fischer- 

Tropsch synthesis (Asinger, 1968). This synthesis cdn be summarized by the equation: 

CO + 3H,-+ CH, + H,O 

It has been frequently noted that long chain, aliphatic hydrocdrbons can be formed in 

large yields in this reaction (McCarthy, 1968). An example of this reaction which may have 

some relevance to possible geologic processes is the use of hematite at temperatures of 

200' to 32.5' C to  polymerize these gases into predominantly straight chain, high n~olecular 

weight hydrocarbons co~ltaining some mono-branched arid multi~branched isomers (Asi~ager, 

1968). Similar hydrocarbons are produced when powdered meteorite is used as a catalyst 

at temperatures below 300' C (Oro, 1970). In the Fischer-Trapsch synthesis, temperatures 



much above 300" C produce increasingly smaller molecular weight hydrocarbons no mather 

what the catalyst is. Below this temperature, catalysts are the main deteminant of the type 

of compounds formed. For instance, if potassium carbonate is mixed with the hematite 

catalyst, the reaction products consist of high molecular weight alcohols, ketones and acids, 

and only two percent hydrocarbons. 

Irradiation of methane by ultraviolet light at wavelengths below 1450 A" is another 

nonequilibrium process by which aliphatic hydrocarbons are synthesized. Low molecular 

weight hydrocarbons including ethane, ethylene, acetylene, propylene and minor amounts 

of five to six carbon containing molecules are formed via such reactions as: 

CH, + hv + .CK, + H. 

.CH, + hv + .CH, + H. 

(Noyes and Leighton, 194 1 ; Mahan, 1962; and Magee, 1963). It has been proposed that 

such reactions should lead to the formation of high molecular weight hydrocarbons, but 

this has not yet been shown experimentally (Lasaga and Holland, 1970). 

Unsaturated.-Unsaturated isomers are a minor constituent of most synthesized hydro- 

carbon mixtures, as they tend to cyclize and form aromatic compounds, or polymerize. 

Acetylene, ethylene and propylene are about the only unsaturated compounds produced 

in significant amounts in high energy reactions such as in Tesla coil discharges through 

methane or methane, ammonia and water (Irving and Petterson, 1967); in the high 

temperature cracking of methane (Brooks, 1950); in the ultraviolet irradiation of methane 

(Mahan, 1962); and in the hydrolysis of metal carbides (Chang, et al., 1970). 

Some larger olefins are formed by the pyrolysis of alcohols at temperatures of 350" C 

to 400' C (Brooks, 1950). This is probably the mechanism by which olefins are produced 

in the Fischer-Tropsch reaction. Their formation in this process is highly dependent on the 

ratio of carbon monoxide to hydrogen: a one to one ratio of these gases will yield 60% 



olefmic hydrocarbons, but more hydrogen rapidly decreases this yield. 

A process also relevant to the natural formation of olefins is the large scale in- 

dustrial production of unsaturates in cracking reactions carried out above 500" C. 

example of this process is the vapor phase cracking of gasoline at 600' C to form up to 

50% unsaturated hydrocarbons (Brooks, 1950). Since rapid quenching of these products 

in most of these reactions is necessary to  prevent auto-polymerization of the unsaturated 

compounds, a high thermal gradient is a favorable condition for their fortnation. 

The importance of isoprenoids as biological markers in geological samples has 

generated considerable interest in the abiogenic synthesis of isoprene, the basic building 

block for these polymers. Attempts to identify isoprene in the methane discharge products 

were not successful (Ponnampemma, 1969), and apparently the only way to synthesize 

dienes in large yields in geologically relevant processes is by selectively cracking a monoene 

(Brooks, 1990; McCarthy, 1968). For instance, butadiene is made by cracking butene at 

654' C. An important constraint on this reaction, other than its starting out only with the 

, monoene, is that it is very temperature sensitive: at 730" C only 2% butadiene is fokrjmed, 

and at 870' C, mainly hydrogen, methane and ethylene are produced. (Hydrocarbon 

mixtures such as those composing gasoline can be cracked to yield from 1% to 10% dienesg 

but these are usually butadienes rather than isoprene.) 

Attempts to synthesize the structurally specific, linear l,4-trans isoprene polymers 

have met with only limited success. Two possible pathways relevant to geologic processes 

have been proposed, both starting with isoprene as the reactant. One suggestion Is that 

polymerization of the diene can take place on the surface of clays. And it has been shown 

that linear isoprenoid-like compounds are formed in preference to cyclic isomers when 

isoprene adsorbed onto vermiculite is irradiated with cobalt 60 rays, but the exact stereo- 

specificity of these products has not been determined (Munday, Pering and Ponnampemma, 

1968). The second proposal is that polymerization of isoprene occurs on a ~ & l y  specific 



catalyst such as Al(Et),-VC1, in a non-aqueous solvent such as heptane (McCasthy and 

Calvin, 1969). However, the relevance of rare metal catalysts in non-aqueous phases to 

natural conditions is not clear. 

Conclusions 

Favorable Geologic EnGronments for 
Abiogenic Syntheses 

This review suggests several characteristics of hydrocarbons that are potentially useful 

as criteria for abiogenicity. Before considering these, however, it seems judicious to first 

examine the geological significance of several aspects of these synthesis conditions. Perhaps 

the single most important condition necessary for hydrocarbon formation is that water 

(or oxygen) must be excluded or removed as it is formed. 

Water is known to inhibit hydrocarbon formation in several ways, depending on the 

type of energy available for the synthesis. For instance, if ultraviolet radiation is the pri- 

mary energy form, the water absorbs the energy necessary to cleave and forn  C-C and 

C-H bonds, and forms reactive species which compete or interfere with hydrocarbon 

synthesis in such reactions as: 

H,O + hv + H- + OH- 

eH, + OH- 7 .CH3 + H2 0 

In electrical discharges, it has been shown that if water is present, the fornation of 

hydrocarbons from methane drops from a total conversion rate of 43% to less than 4% 

(Irving and Petterson, 1967). Similarly, in corona discharges, the presence of water has 

been shown to result in the formation of carboxylic acids and other oxygenated material 

(Allen and Ponnamperuma, 1967). Even in the Fischer-Tropsch reaction, if water Is not 

continuously removed as it is formed, the reaction products will be oxygenated. Thus, it 

appears that an important constraint on many geologic environments favorable to hydro- 

carbon synthesis (excepting carbide hydrolysis) is that they must be relatively anh~~drous 



or must contain "cold spots" where water may condense and collect. 

This constraint has in the past often led t o  the conclusion that hydrocarbons per se 

could not be important prebiotic compounds, and that any abiogenic hydrocarbons 

indigenous to early Precambrian rocks would really represent geochemical Begadation 

products of N- and @containing primordial compounds rather than ofigiraally formed 

hydrocarbons. However, it seems as if there are at least two possible processes by which 

hydrocarbons could emerge and even become the dominant form for prebjotic organic 

matter on the nascent earth. 

One process that has been recently proposed is that the reducing gases of the pnrni- 

tive earth concentrated in stratified layers as they were ejected from the i n t e ~ o r  of the 

planet (Lasaga and Holland, 1970). According to this hypothesis, methane and nitrogen 

would concentrate in the highest layers of the atmosphere. In this layer, the methane 

could react with ultra-violet light to  form higher molecular weight hydrocarbons. These 

denser hydrocarbons would sink to lower levels in the atmosphere, and paissibly collect 

on the earth's surface. 

Another process not previously considered involves a sequential degassing of the 

earth. Cunent thinking suggests that water, methane, carbon monoxide, hydrogen, 

nitrogen and ammonia were degassed from the earth's interior as it heated toward the 

melting point of iron and began differentiating into a core, mantle and cmst (Holland, 

1962). The initial composition of these gases has traditionally been estimated as those 

that would be in equilibrium with silicate melts containing free iron. It seems possible, 

however, that the gases could have been generated in a non-equilibrium pTocess, whose 

closest contemporary analogue would be the rapid metamorphism of water-rich rocks. 

As the internal temperature of the earth increased, water released from initially 

hydrated silicates could have been transferred to cooler, outer portions of the earth 

where it would be assimilated to  form new, stable silicate hydrates. The ii~erl  gases, shsc'i~ 



as methane and nitrogen, which would be generated as metal nitrides and hydides reacted 

with the released water, and which do not readily combine with either silicates or ]metals, 

could conceivably accumulate and be released to the surface of the earth. The net effect 

of retaining water in the earth as hydrated silicates would be an initially mhydrous pimi-  

tive atmosphere. In this, hydrocarbons could form by polymerization induced by ultra- 

violet irradiation of simple hydrocarbon gases, or by thermal polymerization as meteofites 

hit the surface. As the planet heated to the point at which water could no longer be r e t ~ n e d ,  

it would be introduced into the atmosphere, but previously formed, relati~rely inert hydro- 

carbons would be preserved on the earth's surface or in its primitive waters. (See Appen&x 

for calculations.) 

Once the earth differentiated into a core, mantle and crust, and the atmosphere be- 

came oxidizing, conditions favorable to the synthesis of hydrocarbons become much more 

difficult to define. The experimental work previously outlined has suggested over the years 

three possible processes. The oldest is that carbides in magmas upwelling from the mantle 

would react with water to yield hydrocarbons, but this is unlikely because no carbides have 

been reported. A second possibility is that impacting meteorites could introduce organic 

matter into the now oxidizing earth's lithosphere. A third possible source of contemporary 

abiogenic hydrocarbons is fluid inclusions in minerals or rocks containing unstable radis- 

active isotopes such as uranium and thorium. It has been suggested that here, methane and 

nitrogen polymerize to form higher molecular weight hydrocarbons as they are bombarded 

with radioactive emanations (Kranz, 1968; Petersilye, 1964; Davidson and Bowie, B 95 1 ). 

Possible CAtellia for Abiogenicity 

Turning now to the characteristics of hydrocarbons which could serve as abiogenic 

criteria, two factors important in their selection must be kept in mind: (a) the character- 

istics should be absent in biolo@cally derived material, and (b) they should be consistently 

present in at least one type of synthesis products. 



One characteristic seemingly compatible with these factors is the symmetical, 

hump-like gas chromatographic distribution pattern exhibited by the aliphatic hydro- 

carbons synthesized from methane at  moderate temperatures. Associated with this is 

the characteristic predominance of cyclic and highly branched nature of the diphatic 

hydrocarbon isomers. Another distinguishing trait associated with the hi& temperature 

products of both methane and carbon monoxide is that the aromatic hydrocarbons are 

primarily unbranched and composed of even numbers of carbon atoms. The dishfibution 

pattern of the aliphatic hydrocarbons produced from carbon monoxide is also highly 

distinctive. This array of normal and branched isomers is marked by a rapid decrease in 

concentration versus hydrocarbon chain length, and by a regularly repeating sequence of 

methyl substituted paraffins and olefins between the major normal alkane peaks. 

Finally, a characteristic suggested by all of the experimental data reviewed in this 

section is that there is a variation of hydrocarbon type with temperature of formatson 

which is relatively independent of the reactant. This relationship can be seen in the in- 

crease of C/H ratio of the hydrocarbons with the estimated formation temperature. The 

resulting curve, shown in Fig. I ,  reflects in large part the relative stability of the C-H 

bond (87.3 Kcal) and the C-C bond (58.6 Kcal). 

The usefulness of all five of these characteristics in determining the origin of -a~aQuraBly 

occuning hydrocarbons seems at this point relatively promising. However, evidence pre- 

sented in the next two sections indicates that the first two characteristics especially, mtast 

be interpreted with great caution. 
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Fig. 1 .-Variation of the C/H ratio of hydrocarbons with their temperature of 
formation as estimated from published results of non-equilibrium synthesis 
utilizing low molecular weight carbon containing gases. Structures illustrating the 
type of hydrocarbons represented by specific C/H ratios (black dots) are drawn in 
at  various temperatures. The reference suggesting the placement of these specific 
ratios is listed below. The dashed lines serve only to  give an idea of the range over 
which the C/H ratios appear t o  vary with temperature. 

1 .  Friedmann, Bovee and Miller (1 970 
2. Oro and Han ( 1  966) 
3.  Studier, Wayatsu and Anders ( 1  968) 
4. Brooks ( 1950) 
5. Asinger ( 1  968); Gelpi, Han, Nooner and Oro ( 1  970) 
6. Mahan (1 962) 



ABIOGENIC CWA RISTICS IN NATURALLY 

OCCURRING HYDROCARBONS 

Introduction 

It has been shown in the preceding section that the hydrocarbons produced in 

synthesis experiments have some characteristics which theoretically could serve to define 

abiogeriic hydrocarbons of terrestrial and extraterrestrial origin. Ideally, i t  should also be 

shown that these characteristics are unique to naturally occurring abiogenic bitumens and 

are not present in biological material in similar geologic environments. However most se- 

ports in the literature of abiogenic organic matter are highly subjective and are usually 

based simply on the association of the organic matter with some manifestation of igneous 

activity. An extensive study of every deposit would be required to  unequivocally deternine 

the origin of the bitumens, but this is beyond the scope of the thesis. Thus, this section is 

simply an attempt to measure the extent to which some of the experimentally defined 

abiogenic characteristics appear in the hydrocarbons isolated from these bitumens, along 

with the extent of the general chemical and geological evidence for their biogenicity. 

The occurrences listed in Table 1 provide some idea of the variety of bitumens 

associated with hydrothermal mineral deposits. A brief explanation of why specific bitu- 

mens were not examined is included in this table. 

Bitumens in Non-sedimentary Geologic Deposits 

Mountsomel, England 

The first bitumen examined is associated with a Caledonian granodiorite complex 

in Mountsorrel, England, about seven miles north of Leicester. Five stages of mineralization 



Type of Organics 
Asphalt 

Solid, Black 
Bitumen 

Viscous Brown 
Bitumen 

Fluorinated 
Compounds 

Gases, Solid 
Bitumyn 

Solid Liquid 
Bitumen 

Solid, Liquid 
Bitumens 

Petroleum 

Liquid, Solid 
Bitumens 

Liquid, Solid 
Bitumen 

TABLE 1 
SURVEY OF BITUMENS REPORTED TO BE ASSOCIPamD WITW mDROTWE 

Location and Wmt Rocks Associated Inorganic Material Posblated 6eologic Source Gmments  and Refereme 
Trinidad: Asphalt lake in clay, sand mud volcano see p. 24; Dauvillier ( 1965) 
Tertiary sandstone 

Norway: Hydrothermal Ag calcite, silver, chalcopyrite, juvenile fluids from Permian negligible amount available; 
deposit; dolerite dike fluorite, chlorite granitic magma Dons (1956) 

England: Along contact of calcite, pyrite, chlorite, hydrothermal fluids see p. 76 ; Sylvester-Bradley 
diabase dike with granodiorite goethite, marcasite et  al. (1963), King (1959) 

Germany: Inclusions in uranium oxides, fluorite radiation induced currently being studied by 
fluorite and k feldspar polymerization Kranz; Kranz ( 1968) 

Kola Peninsula, Russia; k feldspar, sphene, nepheline polymerization of gases see p. 34; Petersilie (1964), 
South Greenland: Ultra- upon cooling Petersilie and Sorenson (1 970) 
basic and alkaline meta- Bomeman and Starynkevich 
morphic rocks (1933) 

New Mexico: Precambrian calcite 
granite breccia 

none negligible amount available; 
Pratt (1961) 

N. Derbyshire, England: calcite, marcasite, fluorite, hydrothermal fluids see p. 36; Sylvester-Bradley, 
Pb-Zn-Ba-F ore deposit galena et al. (1963) 
in Carboniferous limestone 

Terrestrial igneous rocks 

Sulfur Springs, and New opal, quartz, calcite, 
Almaden, Calif.: Froth sericite, zircon 
veins with hydrothermal 
mercury 
Almaden, Spain: Hg in 
quartzite 
King Mine, Texas: Ng 

Yellowstone Nak Park, sulfur, calcite, gypsum 
Rainbow Spring and 
Calcite Springs: Hot 
water and steam 

upper mantle no specific sample identified; 
Rudakov (1 969) 

hydrothermal fluids see p. 29; Sylvester-Bradley 
et al. (1963), Bailey (1959) 

Wansome (1921) 

Yates and Thompson (1959) 

hot water interacting Love and Good ( 4 969) 
with oil 



apparently affected the granodiorite (King, 1959): the last stage, which is thou&t to be 

part of the late Carboniferous-early Permian earth movements, involved the emplacement 

of a series of WW-ESE trending diabase dikes in the granodiorite. The bitumen, dong 

with calcite, dolomite and chlorite, is aligned along joints and fractures which generally 

parallel the contact of the diabase with the granodiorite, but in some places crosscut the 

dikes. Thus, bitumen deposition postdates both intrusion and solidification of the diabr.se. 

The bitumen has been described as ranging from a "mobile, oily liquid" to  a more viscous 

tar which "gradually hardens on exposure to a black, pitch-like substance" (King, 1959). 

It is considered possibly abiogenic because of its association with igneous rocks (Sylvester- 

Bradley, et al., 1963). 

Samples for study were obtained from the University of Leicester collection (R. J. 

King, sample curator). Most were in the form of chunks about 1-3 inches in diameter wEch 

were held rigid by the calcite matrix (Fig. 2). Fragments of the bitumen were manraaBly 

separated from the calcite and analyzed by the usual procedure (see pages 72-75 for detdls). 

The alkanes, which constitute less than 1% of the totaI bitumen are predominantly saturated 

and yield a humplike distribution pattern upon gas chromatography on various columns 

(Fig. 3). Mass spectra of these aliphatic hydrocarbons show that the dominant homoiogous 

series is C H which is the same as that of the methane discharge products (Ponnam- 
2n-2, 

peruma and Pering, 1966). The infrared spectrum of these aliphatic hydrocarbons shows 

strong absorption in the 720 cm- 1 region (Fig. 4), indicating the presence of long chain 

methylene groups (Nakanishi, 1962). 

Minute amounts of straight chain isomers are present in this bitumen. Attempts to 

isolate fractions from an SE-30 column, corresponding to the retention time of the iso- 

prenoid hydrocarbons, and re-injection onto a more polar column failed to detect these 

compounds. The aliphatic hydrocarbon, however, did show a net optical rotation of 4-1.54 

(K. Pering, unpublished results, determined on a modified Beckman instrument). The 



Fig. 2.--A fragment of the Mountsorrel bitumen showing the interlacing calcite. 
Collected from Mountsorrel Quarry by R. J. King. (Photo by Ames Research Center) 



Fig. 3 .-Gas chromatograms of the aliphatic hydrocarbons isolated ftiom the 
Mountsorrel, Trinidad, and North Derbyshire bitumens: (a, c) 50' S. C. (9. T. 
OV-1 column, 2"/min., He flow 3 ml/min. ; (b) 50' SE-30 column, 2"/min., 
He flow 3 ml/min. 
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Fig. 4.-Infrared spectra of the aliphatic hydrocarbons isolated from: 
(a) Mountsorrel bitumen, (b) Trinidad bitumen 
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carbon isotope ratio of the material is typical of biologically derived material (S. Silveman, 

personal communication). Amino acids have also been detected in the bitumen (Aus:olt and 

Clarke, 1966). 

Asphalt Lake, TdnZdad 

The source of the Trinidad asphalt has been clearly shown to be Tertiar). strata (Snter, 

1960). However, Duvallier (1 965) considers the Trinidad asphalt an example of an abiogenlic 

hydrocarbon mixture formed by volcanic processes. He presumably based this conc&usion on 

the crater-like appearance of the asphalt lake, its characteristic bubbling motion, and the 

presence nearby of mud volcanoes. Because of these conflicting reports, this deposit was 

investigated in this study. 

Samples of the asphalt were collected by C. Ponnampemma. Analysis by the usual 

procedure showed that the aliphatic hydrocarbons constitute about 1% of the total bitumen, 

are predominantly saturated, cyclic and exhibit a humplike distribution pattern (Fig. 3 ;  

see also Ponnampemma and Pering, 1967). The infrared spectrum of the aliphatics shows 

only moderate absorption in the 720 cm- ' region, suggesting that long alkyli methyiene 

chains are not prevalent. The aliphatic hydrocarbons isolated from the Napa95ima Shale, 

considered to be the source rock of the asphalt, gave a similar distribution pattern (sample 

obtained from K. Kvenvolden). 

Aside from the probably sedimentary origin for the asphalt evidence for its biogenic 

origin includes the presence of large amounts of porphyrins (Macovei, 1938) and amino 

acids (K. Pering, unpublislled results). 

North Derbys~re ,  England 

The third bitumen of ambiguous origin to be examined is from Windy Knoll in North 

Derbysllire, England. A comprehensive study of the area by 6. Mueller (1 95 1)  led him to 

the conclusion that the variety of the bitumens in the area was the result of thermal 



distillation of organic matter from sedimentary rocks by hydrothermal fluids. Later, ge- 

ologists at the University of Leicester expressed doubts about his conclusions and raised 

the question of its abiogenicity (Sylvester-Bradley, et al., 1965). The aliphatic hydro- 

carbons in a sample of elaterite, one of the principal bitumens, were found to &sp%agi a 

gas chromatographic distribution pattern and infrared spectrum very similar to those of 

the Mountsonel alkanes. This area is studied in detail in Chapter IV. 

Yellowstone NaGonal Park, Wyoming 

Hydrocarbons have been observed in at least five thermal areas within Yellowstone 

National Park (Love and Good, 1969). These are thought to be derived from Paleozoic 

and Mesozoic sedimentary rocks underlying surficial Eocene to Pleistocene volcanic rocks. 

Hot water and steam in this area apparently steam distilled the petroleum into the thermal 

springs and vents. Bitumens emerging at Calcite Springs and Rainbow Springs were collected 

for this survey. 

Calcite Springs is located near the bottom of Yellowstone canyon in a sequence of 

highly altered mafic tuff, conglomerate and basalt flows, collectively called the ""Early 

Basic Breccia." The hydrocarbons here are in a black bitumen which coats rhombohedra1 

sulfur crystals, or more rarely, alunite and gypsum, around the fumarole vents (Fig. 5 ) .  

The bitumen was extracted from the sulfur with benzene, and excess free sulfur removed 

by passing it over colloidal copper (Blumer, 1957). The aliphatic hydrocarbons, isolated 

by standard procedures, yielded a distribution pattern upon gas chromatography whch  is 

characterized by a hump with superimposed peaks including those corresponding to norrnd 

and isoprenoid isomers (Fig. 6). 

At Rainbow Springs, located on Deep Creek in the northeastern part of the park, the 

hydrocarbons are in the form of a pale yellow oil floating on the hot water. A sample of t l is  

oil was injected directly into the gas chromatograph, yielding the chromatogram shown in 



Fig. 5.--Black bitumen coating sulfur crystals (Photo by Ames Research Center), 
and black bitumen emerging from fumarole vents at Calcite Springs (Photo by K. L 
Pering) 



Fig. 6.-Gas chromatograms of the aliphatic hydrocarbons isolated from 
Calcite Springs and Rainbow Springs Bitumen. 50' OV-1 S. C. O. T. column; 
2"/min, He flow rate 3 mllmin. 





Fig. 6. Apparently, it is composed entirely of normal alkanes and some branched isomers. 

New Almaden, C&fomia 

The last bitumen examined is associated with the New Almaden mercuw mine, 

located just south of San Jose, California. The New Almaden ore is emplaced in a shatter 

zone of Franciscan sandstone and shale, lying above &d around a sloping peddotite in- 

trusive contact (Bateman, 1942). The origin of the organic matter is unknown. Study of 

oil from the Sulfur Bank mine to the north suggests that the bitumens may be related to 

petroleum and oil from Cretaceous rocks a few miles east in the Sacramento Valley 

(Barnes, 1967). The bitumen at New Almaden is either a viscous asphaltic liquid, or a 

brittle solid which occurs in vugs often lined with quartz crystals (Fig. 7). The afiphatic 

hydrocarbons isolated by the usual procedure, yield a humplike distribution pattern 

upon gas chromatography (Fig. 8). 

Summary and Conclusions 

This brief survey suggests that many of those bitumens associated with nsn- 

sedimentary geologic deposits contain aliphatic hydrocarbons which are not distributed 

like those in sediments (Breger, 1963). Hump-like distribution patterns similar to those 

produced by polymerization of methane are common to  these alkanes. Furthermore, 

they are composed predominantly of cyclic isomers. However, these characte~stics, 

which alone are suggestive of an abiogenic origin for these bitumens, are in conflict with 

concomitant chemical evidence (present in varying degrees in each bitumen) for b i sge~c i ty  

in the form of optical activity, isoprenoid isomers, and biogenic carbon isotope ratios. 

Furthermore, the deposits containing these complex hydrocarbon mixtures are composed 

largely of aromatic hydrocarbons. Yet there is no evidence that the genesis of these bitu- 

mens involved the high temperatures associated with abiogenic aromatic hydrocalrboras. 

And, all the bitumens are associated with water rich geologic environments but it has 



Fig. 7.--Weathered (left) and unweathered bitumen in silica-carbonate cinnabar 
ore, New Almaden Mercury Mine (Photo by Ames Research Center) 
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Fig. 8.-Gas chromatogram of the aliphatic hydrocarbons isolated from the 
New Almaden Mine bitumen, same conditions as in Fig. 6 



been shown that the presence of water inhibits hydrocarbon formation. 

Apparently, the humplike distribution pattern is too general a charactefistic to be 

used as a criterion for abiogenicity unless different types of humps can be dlefined and 

associated with specific biogenic or geologic processes. Completely differentiathg among 

the various types of humps ideally would require the complete identification of the vafi-ssus 

isomers composing the hydrocarbon mixtures. But the very fact that these mixtures cznnot 

be resolved on available gas chromatography columns makes this task a very difficult one. 

Fortunately, some general distinctions can be made between the aliphatic hyd~o- 

carbon mixtures. For instance, the humps found in the bitumens associated with hydro- 

thermal deposits are asymmetrical, almost bimodal in shape and reach a maximum In 

intensity in the high molecular weight ( C , , - , ,  ) hydrocarbon region. 

Another point of contrast is that these natural, biogenic bitumens yield aliphatic 

hydrocarbons which consistently have a higher proportion of methylene to methyl goups, 

in contrast to the methane polymerization products, which exhibit a large number of 

methyl carbons. (The large number of methylene carbons may be in the form of long 

chains as in the Mountsorrel bitumen, or of condensed cyclic structures as in the Trinidad 

bitumen.) 

Much more difficult is the task of defining specific causes for these complex alkane 

mixtures. It is tempting to search for a process(es) that would explain the genesis of aHd 

the bitumens. And even though the geologic histories are widely disparate, their fornation 

apparently involved some common conditions which might be clues to what these pro- 

cesses might be. 

For example, all the bitumens, with the exception of the Trinidad asphalt, are asso- 

ciated with minerals deposited at moderately elevated temperatures. This suggests that 

thermal metamorphism of sedimentary organic matter might have generated the complex 

alkane mixtures. This explanation seems particularly pertinent with regard to rnercrlry 



deposits in California, as there is evidence that the waters associated with these are meta- 

morphic waters derived from the Pacific Tectonic Belt (Barnes, 1970). 

Another possible cause is suggested by the fact that all these bitumens have been 

transported to their present deposition site in a water rich fluid phase. It seems plausible 

that during transport of the organic matter, the more polar and more soluble aromatic 

constituents would travel the furthest and would preferentially carry alkanes similar 

to the aromatics, the cyclic isomers, instead of the normal or branched isomers (Welte, 

1965). Some evidence for this process can be found in the Yellowstone bitumens if it is 

assumed that they are of the same origin, because one is highly aromatic and contains a 

large amount of unresolvable cyclic material, while the other is almost entirely paraffinic 

A further possibility is that chemical alteration of the organic matter takes place in 

the water independent of temperature or migration effects. This might involve oxidation 

decarboxylation, reduction, etc., of the organic matter to generate the hydrocarbons. 

This process is compatible with the seemingly puzzling fact that a complex aEphatic 

hydrocarbon mixture was isolated from the Trinidad source rock, as this finding suggests 

that alteration of the organic matter took place before or during deposition of the sedi- 

ment. 

Obviously, the evidence presented in this survey is far too scanty to do more than 

suggest possible alteration processes. It does emphasize that to clearly define these, a 

complete study of the geologic history of the host rocks, source rocks and chemical 

composition of each bitumen would have to be made. Such a study of one bitumen is 

attempted in the next Chapter. The results of this study will not explain the genesis o$ 

all complex hydrocarbon mixtures, but may help to eliminate some possibilities and 

provide concrete evidence for the effectiveness of others. 

As mentioned earlier, there appears to be evidence that the bitumens examined in 

this survey are biological in origin. However, more work should be done on each deposit 



to conclusively prove this. There are other bitumens such as the thucolites, not touched 

on in this study, which may still prove to be abiogenic, but it is very difficult to assess 

just how likely this possibility is from reports in the literature. 

An illustration of the problem of assessing in advance the probability that a par- 

ticular bitumen is abiogenic is afforded by the report of the recently hypothesized 

"abiogenic bitumens" disseminated in an alkaline intrusion in South Greenland (PeterskGe 

and Sorenson, 1970). The twenty-eight rock samples from this intrusion, whkh include 

naujaite, sodalite foyaite, augite syenite, arfvedsonite lujavrite, and olivine gabbro, yielded 

upon extraction with chloroform, brown, liquid and solid bitumens. These bitumens are 

characterized simply as highly oxygenated naphthenic hydrocarbons with short chain 

substituents. Also observed in the rocks were large amounts of hydrocarbon gases (CH,, 

C ,  H, , etc.) in the coarse grained rocks, hydrogen in the fine grained rocks, and little or 

no carbon dioxide or carbon monoxide. 

The presence of the hydrocarbon gases instead of the usual carbon dioxide in these 

rocks is suggested to be due to Fischer-Tropsch type reactions in which the cxbow dioxide 

reacts with hydrogen during metamorphism (or metasomatism) associated with ernplace- 

' ment of the lujavrite. The highly oxygenated state of the liquid and solid bitumens is con- 

sidered due to oxidation of the original high molecular weight hydrocarbons presumably 

during the same metamorphism. 

Disturbing questions are raised by these observations and associated exlplanations. 

Where did the hydrogen come from to reduce the carbon dioxide? How can a strongly 

reducing reaction occur simultaneously with an oxidizing one? Or to put this in a different 

light, dhy  are the liquid and solid forms of carbon in an oxidized state while the gases are 

in a reduced state? Why is methane concentrated in the coarse grained rocks, the hydrogen 

in the fine grained, but the liquid and solids are evenly distributed? And yet, in spite of 

these questions, the only evidence upon which the inorganic origin of the organic mattes 



is based is: (a) the gases are present under pressure and (b) one measurement of a gas 

smple  yielded a C1 value (- .77) similar to  that of magmatic carbon dioxide. 



CHAPTER IV 

ALTERATION PROCESSES AFFECTING HYDROCARBON 

DISTRIBUTION PATTERNS IN THE BITUMENS AT 

WINDY KNOLL. NORTH DERBYSHIRE, ENGLAND 

Introduction 

This portion of the thesis is a study of a deposit of organic matter in central En@and 

for the purpose of determining the effects of geologic processes other than sediment dia- 

genesis which can alter organic matter and affect its hydrocarbon distribution patterns. 

Interest in this particular deposit was first aroused by study of samples of two of the 

bitumens sent to us from England in 1967. In these samples, striking differences were 

noted in the distribution of their aliphatic hydrocarbons, including the apparent loss of 

certain biogenic characteristics from one of them (Pering and Ponnamperuma, 1968). 

A period of three weeks, from May 4 to May 30, 1968, was spent in Derbyshise 

collecting more bitumen, rock and mineral samples, as well as surveying the principal 

geologic features of the area under the guidance of local geologists. These samples were 

analyzed during the period 1969-1 970, along with petroleum samples obtained from the 

British Petroleum Company. 

Previous work on this area is confined to  a doctoral thesis study of these and other 

bitumens in the North Derbyshire area (Mueller, 195 1). Mueller considers the Windy Knoll 

deposit part of a highly differentiated hydrothermal vein system. Within the main vein he 

observed an ordered series of bitumens which he distinguished on the basis of their H:@ 

and O:C ratios. The main bitumens were classified as follows: 

1. Carbonite-black solid 

2. Olefinite-brown solid 



3. Ozocerite-hard wax 

4. Viscous mutabilite-a turbid, light brown semi-solid 

5. Elaterite-yellow-brown viscous liquid 

6. Soft porous Mutabilite 

7. Soft clear Mutabilite 

After a detailed study of this deposit Mueller concluded that its geologic k s t o ~  

involved three episodes of mineral deposition, two episodes of bitumen injection, at  least 

one period in which the deposit was mechanically disturbed, and finally oxidation of the 

marcasite to produce SO, (Mueller, 1970). He interprets these observations and those that 

he made elsewhere in the area as evidence of hydrothermal alteration of"'coal type"' 

substances in the overlying shales. This alteration process he hypothesized involves the 

following sequence of events: 

1. Hydrothermal fluids contacted the shale. Free hydrogen formed as coal-type 
substances in the shale were distilled and as water reacted with carbon to form 
carbon monoxide. 

H,O + C /  CO + H, 

2. Hydrogenation of the oxygen-free aromatic compounds in the shale began as the 
temperature increased, resulting in distillates both of increasingly low H:C ratio 
(e.g. carbonite) and increasingly high H:C ratios (e.g. ozocerite). 

3. Simultaneously, polymerization of the cyclic and olefinic constituents took place. 

4. Organic molecules containing oxygen and nitrogen concentrated in the low boiling 
fraction of the series to form the elaterites and mutabilites. 

5. The resulting organic fractions separated into immiscible liquids and solidified or 
plastified as they cooled. 

Later, Mueller postulated that the melting points of these bitumens (wh?icla he con- 

siders to range from 85' to 3 10' C) indicate the temperature of the hydrotl~ermal fluids 

at the time of their deposition, and that they can serve as a geological thennometer 

(Mueller, 1970). 



Mueller's work is of limited usefulness because many of his field and lablorratow 

observations are biased by his apparently strong desire to prove his geneticd tl-neo~es. 

Furthermore, much of his thinking ignores relatively well established scientific concepts in 

favor of his own. One example of the problems encountered in interpreting MueBBer's 

work is his nomenclature system. 

Mueller did not categorize the bitumens according to the previously established system 

(see Table 111) but rather on the basis of O:C and H:C ratios. However, he makes no effort 

to determine whether any of the bitumens have been oxidized by ground water or air, 

even though there is strong evidence that secondary oxidation of the associated minerals 

has taken place. In addition, O:C ratios are a poor basis for a classification system because 

oxygen is determined only indirectly from combustion analysis and is subject to a larger 

error than are measurements for C, H, etc. Mueller's nomenclature is further complicated 

by the fact that he changed several of the original names in later publications. For instance 

Olefinite became Bernalite and Mutabilite, Foxite (presumably these are honorariums 

after J. D. Bernal and S. Fox, respectively). 

Mueller's work is also diminished in value by the fact that his theory concerning the 

geologic history of these bitumens is based on numerous unsubstantiated observations and 

assumptions. For instance, he concludes that the temperature of the hydrothermal fluids 

reached as high as 3 10" C because one of the bitumens melts at this temperature. However, 

this particular bitumen appears to decompose rather than melt at this temperature. Also, 

studies of fluid inclusions from minerals in this area indicate that the temperature of the 

hydrothermal fluids rarely exceeded 120" C (Roedder, 1969). In another instance, Mueller 

invokes a fractionation process (phase 4 of his genetical history, page 37) which is contrary 

to the well known tendency for oxygen and nitrogen containing compounds to concentrate 

in the highest boiling fractions of petroleum because of their lower volatility, ease of poly- 

merization, and polarity (Ball, 195 1). It is also extremely dubious that water would react 



even at 300' C to form carbon monoxide and hydrogen from methane and cabon.  

Thus, in spite of the fact that Mueller thinks it "outright impossible to visualize 

a(nother) process which would bring together in such a small space bitumens of such 

divergent primary properties be their origin sedimenary or magnetic (sic; perhaps he means 

"ma~at ic" )"  (Mueller, 1963), a renewed study of the deposit seems deskable to deternine 

the fate of the sediment derived hydrocarbons. 

The general approach in this study is to examine chemical and physicd differences 

between the bitumens and the organic matter in their parent sediments, in the light of 

geologic evidence associating the bitumens with these sediments and with the minerali- 

zation process. Emphasis has been placed on the distribution patterns of the aliphatic 

alkanes and on the characteristics of the unfractionated organic matter, as detemkned 

by elemental analysis and infrared spectrophotometry. Parent sediments for the bitumens 

are identified by a combination of field geologic relationships and similarities in chemical 

composition among the various forms of organic matter. This approach is somewhat sim- 

ilar to that used in the correlation of bitumens with lithologically distinct source rocks 

in the Uinta Basin, Utah (I-Iunt, Stewart and Dickey, 1954). 

Geologic Setting 

The Bitumen Deposit 

The bitumen deposit is located on Windy Knoll, in the northern part of County of 

Derbyshire, England (Fig. 9). This area lies about 160 miles north of London and 2 miles 

west of Castleton, the nearest village (Fig. 10). The deposit is easily reached by a two- 

minute walk from a paved, two-lane road. Treak Cliff Cavern, the source of most of the 

fluorite samples, lies one mile southeast of Windy Knoll along the same hi&way, and can 

be entered via a graded walkway provided for tourists. 

The bitumens are in a deposit eight feet long and three feet high, near the top of 

the Windy Knoll promontory. The upper surface of the deposit is hidden beneath 



Fig. 9.-Index and Geologic map of the Pennines Area. Adapted from 
Edwards and Trotter (1 954). 
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Fig. 10.-Geologic map of the Castleton area. Adapted from the Ordinance 
Survey of Great Britain map "Chapel En Le Frith Sheet No. 99.'' 
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grass-covered soil, so that from a distance it appears as a dull, dark patch lying on the 

curved surface of a contrastingly light grey limestone (Fig. 1 1). At the time of this study, 

a vertical strip of the limestone was constantly wet from water running down its face. The 

exterior of the deposit is tough, rubbery and sticky. A solid, reddish brown material cakes 

the upper part and intermittently drops off during the warm season when the oil behind 

it softens and is pushed out toward the surface. Unweathered samples of the organic nxzttea: 

are best dug out with either a metal spatula or the wedge edge of a geologic hammer. 

At least three types of organic material, distinguishable by their physical character- 

istics, are in the deposit. These tend to concentrate in layers roughly paralleling the lime- 

stone surface. The upper one foot consists of a greenish brown, gelatinous oil, which is 

locally called Elaterite (Fig. 1 2). It oozes out between angular fragments of limestone two 

to three inches in diameter. Scattered crystals of marcasite, galena, fluorite, etc., fine 

particulate matter, and interspersed drops of water are suspended in the oil. In places, the 

water content is high enough to give it the appearance of a viscous foam. Some of the 

water droplets are coated with a bright, red-brown solid, which is probably an iron oxide, 

and a white, opaque solid which is possibly anglesite or cerussite. 

In the middle part of the deposit, this oil serves as a matrix for a conchoidally 

fracturing, brittle bitumen which closely resembles a dark, red-brown resin (Fig. 12 and 

Fig. 13). A freshly exposed surface of this bitumen is completely homogeneous in appear- 

ance, with no entrapped gas or liquid filled bubbles visible. The brown color becomes 

darker near the surface of the bitumen. The most striking form for this brittle bitumen ss 

rods which are remarkably uniform in diameter (5-8 mm) and range up to five inches long. 

The same material is found as numerous spheres and globules ranging from microscopic to 

five millimeters in diameter. Some of the rods are thinned out and contorted, as if they 

were in a plastic state at the time of placement, and then hardened rapidly enough to 

"freeze" the flow structures. These rods are in pockets up to eight inches in cliameter, 



Fig. 1 1 .-Photo of bitumen deposit at Windy Knoll (yellow strip in center 
of photo is two feet long). Below it is a sketch of details in the limestone 
hosting the deposit. Karst features are filled with limestone similar to  sur- 
rounding rock and are not visible in the photo. The wavy lines near top of 
sketch approximate a fracture (?) pattern which seems to parallel the base 
of the bitumen deposit. 





Fig. 12.--Photograph of the bitumen from Windy Knoll spread out on a glass 
plate to  show particulate matter in the oil. A clear, brown bitumen globule, a 
cubic crystal of fluorite, and marcasite crystals are visible in the lower, right- 
hand part of the photo. Magnification X6 (Photo by Sally Craig) 



Fig. 13.--Photograph of the black bitumen from the main deposit (top row); 
and samples of the brown bitumen showing both the globule and rod shapes. 
(Photo by Ames Research Center) 



the boundary of each pocket being defined by limestone fragments. Within a pocket- the 

rods are oriented parallel to each other and closely packed together, with only one or Vwo 

millimeters of spacing between them. One pocket was found in which all the rods were 

disposed vertically, while six inches above it, another pocket was filled with rods extmding 

almost horizontally from the face of the deposit. 

Conspicuously associated with the rods are marcasite crystals. These are usually found 

as clumps floating in the oil matrix around the rods. Remnants of a concave shell in many 

of the fragments indicate that they were once attached to the rods. Many of the rods still 

have massive aggregates of marcasite firmly attached to them (Fig. 14). These may be pulled 

off with effort to yield a shell whose inside surface mirrors the shape of the rods, and con- 

tains patches of the resin-like material. Examination of the crystals on the rods reveals that 

about 90% are oriented with their [ 101 ] face on top and their pinacoid face (usually un- 

striated) oriented nearly perpendicular to the bitumen surface (Fig. 15). That past 06 the 

crystal forming the exterior of the shell is euhedral, while at the interface with the bitumen, 

the crystals are subhedral to anhedral. Occluded among the marcasite crystals are rounded, 

subhedral crystals of purple fluorite about one-half millimeter in diameter. These amoua~t 

to less than 1% of the volume of the marcasite. 

Freely suspended in the oil at this level are crystals of purple fluorite (Fig. B 21, calcite, 

galena, and quartz (see page 55 for details). Granular calcite containing many occluded 

mineral fragments and bitumens is also present. 

A third form of bitumen predominates in the bottom layer of the deposit. It is a brittle, 

shiny black material which forms a discontinuous band about two inches thick along the 

lower boundary of the deposit, and also appears as large, chunky fragments up to three 

inches in diameter (Fig. 13). Massive calcite is associated with this black bitumen. Several 

pockets of calcite in the limestone within 100 ft of the main deposit also contain this black 

organic material dispersed as a fine powder along cleavage planes. 



Fig. 14.-Photograph of one brown bitumen globule showing the massive 
aggregates of marcasite adhering to its surface (Photo by Ames Research 
Center) 



Fig. 15.--Sketch showing the orientation of the marcasite crystals 011 the 
surface of the brown bitumen. Magnification X6. 



The limestone fragments in the bitumen deposit are composed almost entirely of 

granular calcite interspersed with a similar, black bitumen (Fig. 16). Random, small 

vacuoles filled with a hard, clear green, fluorescent hydrocarbon are exposed if these 

limestone fragments are broken. Small casts of fossils and recrystallized crinoid stems 

are also present. 

Regional Geology 

The origin and geochemical history of the organic matter at Windy Knoll is best 

developed by first considering it as one aspect of the geology of the Pennines region. The 

followi~lg summary of this geology is taken from papers covering the local geology and 

sedimentation of this region; a more detailed review is given in more detail by the Geo- 

logical Survey of Great Britain (Edwards and Trotter, 1954). 

The basement of the Pennine region is exposed as a group of Cambrian or Precam- 

brian slates and sandstones in the Ingleton district (Fig. 9). Scattered outcrops s f  Ordo- 

vician shales and rare limestones, along with Silurian sandstones, shales, and flagstones 

appear in the northeastern part of the region. More than 80% of the Pennine rocks are 

of Carboniferous age. The Lower Carboniferous consists almost entirely of Pimestone, 

which teaches a maximum thickness of 5,000 ft in the northern Pennines and the 

Derbyshire hills. In the central Pennines, the Lower Carboniferous rocks are concealed 

beneath Upper Carboniferous rocks. 

Aside from two groups of Upper Carboniferous limestones in the north Pennines, 

the Upper Carboniferous is composed of the lithologically distinct Millstone Grit Series. 

This consists of mudstones, shales, and sandstones which reach their maximum tkckness 

of 6,000 f t  neat the Pennine uplift. The series extends south from west Yorkskre as a 

broad belt, paralleling the Pennine anticline, and narrowing down towards the Peak 

district, where Grit rocks almost surround the limestone hills of Derbyshire. Overlying 

these rocks are the Upper Carboniferous Coal Measures: a series of shale, sandstone, and 





coal cyclothems covering an area of 3,000 sq miles and reaching a thickness of 5,000 ft. 

These are best exposed as the coal fields of Lancashire and Cheshire on the western flanks 

of the Pennines, and of Yorkshire and the East Midlands to the east. 

The only major oil field in Britain is at Eakring in a large anticlinal fold in the basal 

Coal Measures and the Millstone Grit on the eastern flank of the Pennine monocline. 1% is 

thought to have formed as oil migrated upwards from the underlying Grit shales and be- 

came trapped in porous horizons (Kent, 1966). Rare oil reservoirs in the Carboniferous 

Limestone, such as at Hardstoft, are considered to be the result of downward migatiora 

of oil from the lower Millstone Grit shales to porous limestone horizons near the ufi- 

conformity (Kent, 1954). Indeed, almost all of the recorded oil showings associated with 

the limestone lie near the unconformable overlap of the Millstone Grit onto the limestone 

(Lovely, 1 946). 

Permian and Triassic sandstones and marls crop out in a continuous strip between 

Darlington and Nottingham. They also form the whole Cheshire plain and west Lancashire, 

where they are 5,000 ft thick. 

The oldest Pennine rocks were laid down in a geosynclinal trough which extended Gom 

Europe to North America (Lovely, 1946). During the ensuing Caledonian osogeny, most of 

the British Isles was elevated into a land mass so that Devonian rocks are absent in this 

region. Deposition of the Lower Carboniferous rocks marked the transgression of Devonian 

European seas across Britain and the beginning of the Carboniferous geosyncline of central 

Europe. This period was followed by a silting up of the sea and concomitant. mild tectorarc 

deformation of the rocks, producing the fresh water and deltaic rocks of the Upper Carbon- 

iferous period. Permian and Triassic deposits were laid down in the western part of the 

saline Zechstein sea of Germany, which regressed eastwards during Jurassic times. Erosion 

during Tertiary time formed the broad features of the present Pennine Hills, 



The most important deformations in the Pennine region took place during the 

Hercynian orogeny, which began during Carboniferous times and culminated in the late 

Carboniferous or Permian. During this orogeny, NNW-trending anticlinal uplifts and the 

north-south fold line, the Pennine Anticline, were generated. Toward the south, a number 

of folds developed providing trough-like synclines which are now the productive coal 

fields. The anticlines of Hardstoft (Derbyshire) and Eakring (Nottingham) were among 

these. Post-Triassic, possibly Tertiary, movements caused domal elevation of stmctural 

units in the west and elevation of the north-south trending Pennine axis. The massifs of 

the Askrigg Block and the Derbyshire Dome are in part structurally defined features 

developed during the Kercynian orogeny. Doming of the blocks during Permian times 

may have resulted in the formation of the ENE, NNW, and WNW fracture patterns -8sn 

which ore minerals are now deposited (Fig. 2). 

Nydrothemal Mneralization 

Hydrothermal mineralization in the Pennines has been described by Dunham 4 1  968)  

and Sawkins (1 966), and details of the mineralization in North Derbyshire by Ford 4 1955, 

1964, and 1969). 

The Castleton area is in the northernmost part of the Derbyshire lead-zinc orefield. 

The distribution of orebodies here is controlled by fractures in the limestone, such as at 

Odin Rake, with the overlying Edale Shale acting as a cap rock for the fluids. Fluorite 

deposits in the limestone along the Treak Cliff scarp are not particularly associated with 

the fractures but rather with the boulder bed along the limestone-shale unconformity, 

where massive, radiating layers of the purple and white mineral fill voids between the 

boulder-bed blocks (Fig. 17). Metasomatic replacement of the limestone by fluorite is 

evidenced by massive fluorite containing recrystallized crinoid stems, and euhedral, 

cubic crystals of fluorite dispersed in otherwise unaltered limestone. The purple form 



Fig. 17.--Fluorite between limestone blocks of the boulder bed in Treak 
Cliff Cavern (Photo by K. L. Pering) 



of fluorite is usually associated with mineralized areas contacting the Edale Shale. This 

association has suggested to some people that the color is due to organic matter from 

the shale which was incorporated into the fluorite (Ford, 1955). That heating of this 

fluorite yields some volatile organic matter, was shown in 1920 (Garnett), and Mueller 

(1  952) speculates that a form of bitumen in the deposit at Windy Knoll is also in the 

fluorite and gives it its purple color. 

The sulfide minerals present in the orefield are: galena (the major ore mineral), 

sphalerite, chalcopyrite, pyrite, and marcasite. Fluorite, with minor quantities of barite, 

calcite, quartz, and dolomite constitute the non-sulfide minerals. At Windy ECndl, eukedral, 

cubic crystals of fluorite; rhombohedra1 calcite; euhedral, octahedral galena; and skabhedral 

crystals of quartz are suspended within the bitumen deposit, but the limestone host rock 

is not mineralized. About twenty feet west of the deposit, massive, milky white, crystalline 

calcite appears in the limestone. Almost buried beneath the soil, fifteen feet to the north, 

there are pockets of tiny, cubic crystals of purple fluorite in the limestone dispersed with 

calcite and bitumen (Fig. 18 and Fig. 19). A consistent paragenetic sequence for these 

minerals is not clear. However, since the largest deposit of lead in the Windy Knoll area 

is at Odin Rake, and the fluorite is localized around it, along the limestone scarp, the rake 

appears to be one of the main local sources of the fluoride-bearing solutions. Over the 

whole orefield, there is an increase in fluorite in an easterly direction, followed by barite: 

and an increase in calcite in a westerly direction. 

Fluid inclusions in fluorite from North Derbyshire place the temperature of deposition 

at about 80" C (Roedder, 1969), while late primary and pseudo-secondary inclusions in- 

dicate a possible second phase of mineralization at about 140" C. Little geochemical work 

has been done in the North Derbyshire orefield, but in the Northern Pennine orefields, high 

potassium concentrations in the fluids (from the inclusions) suggest that the ore-bearing 

solutions rose from deep parts of the earth's crust. Mineral formation in the rising fluids 



Fig. 1 8.--Brittle, brown bitumen surrounding a fluorite crystal in a massive 
fluorite-calcite-bitumen aggregate 



Fig. 19.-Massive fluorite-calcite-bitumen aggregate showing brown material 
similar to that in Fig. 22, page 65, in addition to the clear brown bitumen 



appears to be largely controlled by the temperature of the cooling fluids, althou& mixing 

of the fluids with connate brines may have introduced barium, causing precipitation of 

barite. The time of mineralization in the Derbyshire orefield is placed at late Trhssic on 

the basis of mineralization of basal Triassic sands and gravels in the southern part s f  the 

ore field. Model lead ages in the range of 180 k 40 my are also in this range (Moorbath, 

1961). 

North Derbyshire Geology 

Details of the geology of the Castleton area have been published by Ford (1  9551, 

Simpson and Broadhurst (1969), Parkinson (1953 and 1956), and Shirley and Horsfieid 

(1 940). The limestone which composes the Derbyshire dome is relatively uniform com- 

pared with adjacent rocks, and stands at a higher elevation. Hence, it is often referred to 

as a massif. It is fringed on the north and east by a remnant band of reef limestone with 

a fore reef slope which forms a prominent scarp 400 ft high near Castleton marking the 

original surface of the reef front (Fig. 10). Windy Knoll is a rounded and topogaphically 

prominent knoll of this reef limestone, forming a structural high near the top of the massif 

at its extreme northern edge (Fig. 20). The erosional surface of the limestone dome is 

covered by remnants of a boulder bed at Windy Knoll and Treak Cliff which formed be- 

fore deposition of the Edale Shale. It is composed of large limestone blocks with a broad 

lithological range; the blocks range in size up to several yards in diameter, and are asso- 

ciated with smaller blocks, pebbles, and fossil fragments. Extensive cave development at 

Treak Cliff and Blue John expose the boulder bed and karst features in the ui~derlying 

massif limestone. Surrounding the massif is the basal Edale Shale of the Millstone Grit 

series. This rock crops out within 200 ft of Windy Knoll, where it is exposed by the Mam 

Tor landslip. The only igneous rock in the area is the basaltic lava exposed in Cave DaBe. 

Further south, around Peak Dale, intrusive sheets and necks of dolerite, known locally as 

toadstones, and interbedded basalt and tuff are exposed in the limestone. 



Fig. 20.-Cross section through Windy Knoll showing relationsfips between 
the lead and fluorite deposits, the boulder bed, and the bitumen deposit on 
Windy Knoll 
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The limestone of the dome is a clear-water facies rock. I t  is best exposed in W ~ n n a t q  

Pass as a massively bedded, aphanitic, grey limestone. On the plateau above Castleton, cranond 

debris is profuse. In the Castleton area, the limestone is of Visean Age on the basis of coral- 

brachiopod zones D, and D, , and the Goniatite subzones P, , B,, and B ,  (Wolfenden, 19551. 

The porosity of the limestone matrix is almost zero. Most of the visible porosity rs 

secondary, as open joints and fissures (now, or at one time filled with ore) anld hollow 

chambers in shell fragments which are usually lined with a thin layer of drusy calcite. 

Little porosity can be associated with the karst features, as the detritus in these is 

cemented with a calcite matrix. The absence of significant oil in the Lower Carboniferous 

limestone is attributed to  a very limited mobility of the organic matter within this non- 

porous carbonate matrix. Microscopic examination of the rock shows that segregated 

organic matter in the limestone is predominantly black particulate matter wkch  con- 

centrates along boundaries between recrystallized and unrecrystallized calcite grains 

(Fig. 2 1 and Fig. 22). Macroscopic occurrences of organic matter have been reported 

in this area (Mueller, 1954a), but most of these occurrences are no longer accessible. 

The most common type is the dark yellow, viscous oil called Elaterite (apparently the 

same as that of the same name at Windy Knoll). A second form is a black, shiny solid 

material associated wit11 calcite veins and fossil cavities in the limestone. 

The reef complexes cropping out at Windy Knoll, Castleton, and Winnats Pass are 

considered to be calcareous algal reefs with Stromatolite structures. Like the dome Iiene- 

stone, the reef rock is a pale grey, aphanitic limestone, but has very few crinold fossils. 

Its porosity is also limited tc; secondary fractures and cavities. The limestone biocks Ira 

the boulder bed are derived from higher parts of the dome and are thus litholo@cally the 

same as the massif and reef limestone. The matrix of the boulders ranges from a soft 

calcareous mud, such as at Treak Cliff (Fig. 23), to a highly indurated, calcareous cement, 

as at Windy Knoll (Fig. 11). 



Fig. 21 .-Black, opaque material (clay-organic?) concei~trated ill bands adjacent 
to  recrystallized parts of the limestone. Sample from Treak Cliff Cavern; Magnifi- 
cation X140 (Photo by Sally Craig) 



Fig. 22.--Black, opaque material in unrecrystallized limestone from Windy 
Knoll quarry. Magnification XI40 (Photo by Sally Craig) 



Fig. 23.--Boulder bed exposed in Treak Cliff Cavern, showing dark, clay 
matrix (Photo by K. L. Pering) 



The Edale Shale is best seen at  the base of Mam Tor as a dark brown, calicareous 

mudstone containing a one foot thick band of silty limestone. Here, the thinly laminared 

mudstone shows impressions of pelecypods, but goniatites, which are a common fossil in 

the shale, were not seen. Opposite Mam Tor, the shale in the landslip masses is &&ly 

fissile. The partings show no fossils, and the plates are coated with a glossy surface wh1cE-a 

may be organic, or iron stain. In the same shale are scattered pyrite nodules about five 

millimeters long. The shale partings in most of these areas are coated with a sludge of clay 

and free sulfur. The freshest exposures of this rock are presently at the Raper Mine, about 

12 miles south of Castleton (Fig. 24). The Edale Shale is quite rich in organic matter, as 

indicated by the fact that hollows in goniatite fossils have been found filled with a dark 

brown oil (Edwards and Trotter, 1954). 

The North Derbyshire Massif represents a tectonically stable region of depositao:~ 

during the latter part of the Lower Carboniferous. The reef limestone along the edge of 

the massif marks the margin of the sedimentary basin on the north and east sides of this 

region. Uplift of the region in mid-Carboniferous times permitted subaerial erosion of the 

limestone surface, producing karst features and leaving blocks, boulders, and gravelly 

limestone along its surface. In late Carboniferous times, subsidence resulted in deposition 

of the Edale shales over this surface. Later action of ground water enlarged fissures In the 

solid limestone beneath the shale and created the caves during Tertiary or Pleistocene times 

of Treak Cliff and Blue John. Mild tectonic deformation during the Hercynian orogeny be- 

gan folding the basin area, and fractured the limestone along Odin Rake. Presumably, min- 

eralization in the Castleton area began as hot fluids welling up along this fissure deposited 

lead ore in the fissure and migrated through solution cavities and pores of the boulder bed, 

up the steep limestone scarp formed by the front of the reef. (For a detailed dlescriptaon s f  

the complex sequence of mineralization events see Ford, 1967). The cooling fluids deposited 

fluorite both directly and by replacing the limestone along the unconformity. Mixing w7?th 



Fig. 24.--The open pit Raper Mine exposing the Edale Shale in fault contact 
with mineralized Lower Carboniferous Limestone (Photo by K. L. Pering) 



brines from the overlying shales may have hastened the cooling process, and contibuted 

to  the formation of the purple-colored fluorite. The unique concentration of bitumen 

at Windy Knoll may be the result of entrappment of the fluids under hydrodynamic con- 

ditions (Hubbert, 1953) as they migrated along the unconformity. 

Experimental . 

Infrared spectra were run as liquid films (Perkin Elmer 521) unless otherwise stated. 

Gas chromatographic conditions are given in the figure legends. Elemental compositions 

were obtained from duplicate combustion analysis. 

Edale Shale 

Three samples of shale from about the same stratigraphic horizon were analyzed: 

Sample I-S is from a recent road cut just below Treak Cliff Cavern, Sample II-S is horn 

200 ft NE of Windy Knoll at  the base of Mam Tor, and Sample 111-S is from the head of 

Odin Rake. Sample IV-S is from the Raper Mine and may not represent the same con- 

ditions of deposition as the others. 

The shale was washed in water, then scrubbed with a clean bottle brush to  remove 

. as much as possible of the soft, muddy coating. The scrubbed plates were rinsed in dis- 

tilled water and dried. The rock plates, ranging in size from three to six centimeters in 

diameter and one half to one centimeter in thickness were broken up in a mortar to about 

two centimeter chunks. These were refluxed again in benzene for several hours. The cleaned 

pieces were then ground in a stainless steel ring crusher until the material passed through a 

200-mesh sieve. A 250 g sample was sonicated three times for 10 min in 300 ml benzene- 

methanol (9: I). 

Evaporation of the extract from Sample 11-S yielded 654.1 mg of a dark, brown- 

green viscous oil. An infrared spectrum was recorded and whatever material would dissolve 

in benzene was chromatographed on 50 g alumina with hexane to  obtain the aliphatic 



hydrocarbon fraction. The hexane eluant was usually a pale yellow color, indicating the 

presence of free sulfur. This was removed by passing the hcxane over a column of colloidal 

copper three centimeters long (Blumer, 1957). The purified aliphatic fraction for Sample 

11-S weighed 75.5 mg. The weight of the fractions from the remaining two samples was 

not obtained because evaporation results in loss of some of the more volatile components. 

The branched-cyclic fraction of the aliphatic hydrocarbons isolated from the Raper 

Mine shale was separated from the straight-chain isomers by molecular sieving. Granular, 

5 A0 Linde molecular sieve (30160 mesh, Wilkens Instrument Co.) was dried for 12  Iiliss 

at 350" C and stored in a desiccator. About 50 mg of the alkanes were added to  50 ml 

dry benzene and placed in a 100 ml round-bottomed flask. About two grams molecular 

sieve was added and the mixture refluxed for eight hours. The benzene was decanted off 

and evaporated to obtain the branched-cyclic fraction. 

Lower Carboniferous Limes tone 

Two of the limestone samples analyzed were collected from inside Treak Cliff 

Cavern. Sample I-L is an aphanitic, light-grey, fossiliferous rock with uneven patches of 

dark, homogeneous limestone dispersed in it. Collected on the upper right-hand partoof 

the cavern, this rock is probably part of the boulder bed. Sample 11-L is an ayhanitic, 

grey limestone from a small cave to the left of the main cavern. There is no evidence of 

a boulder bed matrix here, and this rock is probably part of the fissured, massif Iimestone. 

a third, Sample 111-L, is a pale grey rock collected from the face of Windy Knoll quarry, 

about 10 ft north of the bitumen deposit, This rock is probably a reef limestone, althou& 

it may be part of the boulder bed. 

Sample 11-L was analyzed by two different methods to determine which was the 

more efficient. The first method is dissolution of the carbonate matrix with hydrochlo~c 

acid and extraction of the saline solution with organic solvent. The second is direct 



extraction of the ground rock with benzene-methanol (9: 1). A detailed procedure is 

given with respect to this rock: the remaining samples were analyzed by the extraction 

method, which proved more efficient. 

Sample 11-L was cleaned by placing the pieces, about 4 x 4 inches in diameter, in a 

stainless steel beaker and covering them with 1N HC1. As evolution of C0, ceased, a few 
\ '  

milliliters of concentrated HCl was added. After two to three hours, the acid cleaned 

rocks Were rinsed in water and dried. The pieces were refluxed in benzene, dried, broken 

into halves with a hammer, and crushed in a jaw crusher. These fragments were then 

ground in a stainless steel ring crusher to about 200 mesh. 

About 300 mls distilled water was added to 189 g of the powdered limestone. To 

this slurry, 6N HCl was added until 95% of the limestone had dissolved. The resultant 

black solution was divided into two 500-ml portions and each was extracted with three 

300-ml portions of hexane. Benzene was not used because of its tendency to form 

emulsions. The extract was dried over CaC1, and evaporated to  dryness. The residue was 

a white solid at room temperature and weighed 20.6 mg. 

For the second method, 294.2 g of the powdered limestone was refluxed three times 

with 300 ml benzene-methanol (9: 1). The extract was opaque and grey in color. To re- 

move the colloidal material, it was evaporated just to dryness and the residue slurried with 

hexane. The colloidal hexane suspension was shaken in a separatory funnel with dilute HC1 

for about 10 min to dissolve the fine carbonate particles and clear the hexane. The clarified 

extract was dried over CaC1, and evaporated to  dryness under nitrogen. The residue, 

weighing 61.7 mg, was dissolved in hexane and eluted off 20 g of alumina to yield a 65 rng 

aliphatic hydrocarbon fraction (the discrepancy in weights may be due to incomplete 

evaporation, or silica gel particles in the flask). The aliphatic hydrocarbons were chrom- 

atographed to obtain their distribution patterns. 



Fluorite 

The fluid inclusions in the Castleton fluorite are too small to permit isolation of the 

contents of an individual inclusion for study: thus, the probability of obtaining organic 

matter from only primary inclusions is small. The fluorite samples were analyzed using 

successively more rigorous crushing and cleaning procedures on the assumption that 

crushing would preferentially fracture the mineral along octahedral cleavage planes. Pre- 

sumably, secondary inclusions forming along this set of planes would be removed in 

greater amounts than the contents of primary inclusions which tend to concentrate along 

the cubic faces of the crystal (Roedder, 1967). 

A six by five inch sample of dark purple fluorite from Treak Cliff Cavern was rinsed 

in distilled water and then methanol and dried. The sample was broken into two-inch 

fragments and refluxed three times with benzene-methanol (9: I )  overnight. The fragments 

were removed, crushed in a mortar, and then in a stainless steel ring crusher to pass through 

a 200-mesh screen. The powder (500 g) was sonicated with 400 ml benzene-methanol (9: 1 )! 

for ten minutes three times. Evaporation of the solvent and chromatography on alumina 

yielded about one milligram hydrocarbons. Sample 11-F was treated in a like manner except 

that the two-inch pieces were sonicated with benezene-methanol(9: 1)  for ten minutes, 

and then broken into one-centimeter fragments and sonicated twice before crushng to 

200 mesh. A third sample (111-F) was crushed to one millimeter size and sonicated twice 

before finally crushing to 200 mesh. Two samples of white fluorite (IV-F, and V-F) were 

analyzed in the same manner as Sample 11-F. The quantity of aliphatic hydrocarbons above 

nC, , isolated from these two samples is estimated from gas chromatography as about 0.1 mg 

per 500 g rock. 

Nardstoft, Eakring and Plungar Crude Oils 

Petroleum samples from the Hardstoft, Eakring and Plungar oil fields were obtained 



from the British Petroleum Company. The first two are dark brown, medium weight oils 

and the latter is a heavy black crude. None of these oils have been affected by hydrothermal 

solutions, although the Plungar field may have been affected by an igneous intmsbn 

(Falcon and Kent, 1960). Infrared spectra of the oils were recorded, and then about 0.5 rnl 

of the oil was chromatographed on 50 g alumina. 

Brown Bitumen 

Representative samples of the brown bitumen were isolated with tweezers from the 

oil matrix material dug up from the center of the Windy Knoll deposit. The solid brown 

fragments were refluxed in benzene and air dried. Three hydrocarbon analyses were 

carried out on various specimens, but confirmatory mass spectrometry and destmctive 

distillation were carried out on only one sample. Efforts to  dissolve the bitumen in py- 

ridine, dioxane, carbon disulfide, and chloroform failed. The bitumen is stable in sodium 

hydroxide at 100' C, but turns black when heated with hydrochloric acid at t h s  temper- 

ature overnight. 

For the first analysis, about 25 g of the rod-shaped bitumen were crushed in a nnorkar 

to a fine powder. The powder, weighing 21.44 g, was scraped into a soxhlet extractor and 

refluxed with benzene-methanol(9: I), for 12 hrs. The extract was evaporated almost to 

dryness under nitrogen to give a residue weighing 768 mg. An infrared spectrum of the 

extract was recorded and the material then chromatographed on 30 g of alumina. A portion 

of the aliphatic hydrocarbons was reserved for gas chromatography, and the remainder was 

refluxed with twenty times its weight of molecular sieve for 12 hrs to  separate the straight- 

chain alkanes from the branched-cyclic isomers. The presence of isoprenoids was confirmed 

by collecting peaks corresponding to  the retention times of the C,, , C,, , and C,, isoprenoids 

and reinjecting them onto a 12-ft polyphenyl ether column. Peaks corresponding to rso- 

prenoids on this column were collected and vaporized into the direct probe of a CEC 103 

mass spectrometer. 



To elucidate the nature its infrared spectrum of a portion of the insoluble material 

remaining after extraction was recorded in a KBr pellet: the remsbinder was placed in an 

all-glass, bantamware, vacuum distillation system. The bitumen was heated to 165' C 

under house vacuum for two hours, cooled, and then washed with benzene-methanol 

(9: 1). After drying, it was reheated to  260° C over a period of three hours, cooled, and 

washed again. The remaining material was finally heated to  3 10' C, cooled, and extr~cted.  

The aliphatic hydrocarbons in all three extracts were isolated by chromatogaphy on 

silica gel after their infrared spectra were recorded. 

Ela teri te Oil 

Samples of the viscous oil completely free from other bitumens were impossible to 

collect at Windy Knoll. Oil containing the least amount of particulate matter was extracted 

with benzene-methanol (9: 1). The brown, fluorescent green extract was evaporated to 

dryness under nitrogen to yield a gummy, viscous residue. Three samples of t h s  oil were 

examined. An infrared spectrum was recorded and the oil chromatographed on alumina. 

The aliphatic hydrocarbons were purified on silica-gel thin layer plates before gas chrom- 

atography. One sample was chromatographed, along with standards, on silver nitrate 

impregnated silica gel thin layer plates. A broad, unresolved band formed, indicating that 

unsaturated hydrocarbons were present. This band was scraped off, eluted, and the inha- 

red spectrum of the eluted material recorded. 

Black Bitumen 

The three samples of black bitumen analyzed include two from the thick band along 

the bottom of the main Windy Knoll deposit, and one from a pocket in the limestone about 

six feet below this. The first two samples are hard, brittle material which is denser than 

water, and fractures irregularly (not conchoidally). The third sample has a m~lch  duller luster 

and crrimbles easily to a fine powder (the first two will also, if sonicated). All three yield 



about the same of organic material upon extraction: one of the first two bitumens, 

weighmg 16.87 g, was sonicated in benzene-methanol (9: 1) for 10 min three times. 

Centrifugation and evaporation of the solvent yielded 870 mg black asphaltic oil. An 

infrared spectrum was recorded and the oil chromatographed on alumina to yield 522.3 mg 

aliphatic hydrocarbons. 

Results 

Edale Shale 

The infrared spectrum of the organic matter extracted from the Edale Shale indicates 

that it is composed primarily of aromatic compounds containing some oxygen and possibly 

sulfur (Fig. 25 ( 1 )). Approximately 10% of this extractable material is aliph.atic hydro- 

carbons which consist of an homologous series of straight-chain isomers and lesser amounts 

of branched-cyclic isomers (Fig. 26). These hydrocarbons form a distribution pattern which 

consistently maximizes in the nC,, region. The aliphatic hydrocarbons isolated from the 

Raper Mine Edale Shale show a smaller proportion of straight-chain isomers, so that the 

straight-chain and branched-cyclic components are in about equal amounts. Removal of 

the straight-chain isomers Ieaves a complex mixture of hydrocarbons in which the lower 

molecular-weight isoprenoid isomers are the prominent components (Fig. 27). 

Lower Carboniferous Limestone 

In contrast to the Edale Shale, infrared absorption of the extractable ~rmate~al from 

the Lower Carboniferous Limestone indicates a composition dominated by high rnoiecular 

weight, paraffinic hydrocarbons, a moderate amount of which are oxygenated (Fig. 28 (2)). 

Aiiphatic hydrocarbons make up more than 90% of this extractable material. The distri- 

bution of the hydrocarbons obtained by either method of extraction exhibited the same 

distribution patterns, characterized by a strong dominance of the high molecular weiglt, 

straight-chain isomers, which reach a maximum peak intensity around nC,, --nC,, (Fig. 29) 



Fig. 25.-Infrared spectra of bitumens genetically related to the Millstone 
Grit rocks 
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Fig. 26.-Aliphatic hydrocarbons extracted from the Castleton Edale shale; 
(a, b) Perkin Elmer 880; 50' OV- 1 S. C. 0. T. column; He flow rate 3 mllmin. 
Temp. prog. 2Olmin; (c) Aerograph 660, 50' SE-30 F&M HiPak column; He 
flow rate 2 mllmin.; Temp. prog. 2"jrnin. 

(a) Sample 11-s Att. X200: 200 ft  from Windy Knoll 
(b) Sample I-§ Att. X50: Below Treak Cliff 
(c) Sample 111-S Att. X50: Just above Odin Rake 
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Fig. 27.-Aliphatic hydrocarbons extracted from the Raper Mine Edale 
Shale. Same conditions as Fig. 16. 

(a) Total aliphatic hydrocarbons 
(b) Branched-cyclic hydrocarbons from molecular seiving 





Fig. 28.-Infrared spectra of bitumens genetically related to  the lower 
Carboniferous Limestone 
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Fig. 29.-Aliphatic hydrocarbons extracted from the Lower Carboniferous 
Limestone. Same conditions as Fig. 26(b). 

(a) Sample I-L: Boulder bed limestone, Treak Cliff 
(b) Sample 11-L: Massive limestone, Treak Cliff 
(c) Sample 111-L: Windy Knoll quarry 
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Fluorite 

Extractable organic material in the purple fluorite yields an infrared spectmm 

suggesting a composition of low molecular weight carbonyl-containing compounds. The 

aliphatic hydrocarbons isolated from the first sample of purple fluorite exhibit a bimodal 

distribution pattern, with one maximum at nC,, and another at nC,, (Fig. 30). That of 

the aliphatics from the second sample is also bimodal, but the nC,, mode has a smaller 

intensity relative to  the nC,, mode. Hydrocarbons exhibiting a distribution maximizing 

only at nC,, were isolated from the third sample. Insufficient material was extracted from 

the white fluorite for an infrared spectrum. The aliphatic hydrocarbons isolated from 

both samples have the same distribution pattern, which range from nC,, to I P C ~ ~  a ~ r d  

maximized at nC,, (Fig. 3 1). 

Nardstoft, Eakdng, and Plungar Crude Oils 

The infrared spectra of the Hardstoft and Eakring crude oils are less complex than 

those of the extractable matter in either the limestones or the shales: they suggest that 

the oils are composed largely of aliphatic hydrocarbons, with minor amounts of oxygenated 

and aromatic material (Fig. 25 (5)). The aliphatic hydrocarbons in these two oils are almost 

identical: straight chain isomers dominate, ranging from C,, to  CZ5 and maximizing a t  

C I 3  (Fig. 32). 

The Plungar crude oil yields an infrared spectrum indicating a much larger proportion 

of aromatic compounds than is present in the other two oils (Fig. 25 (6)). The aliphatic 

hydrocarbons from this oil are also different, containing a much larger proportion of 

branched-cyclic isomers which are the dominant compounds below nC,, (Fig. 32 (c)). 

Brown Bitumen 

About 3.4% of the brown bitumen is soluble in organic solvents. The infrared spectrum 

of this material indicates that long-chain aliphatic hydrocarbons are prominent constituents, 



Fig. 30.-Aliphatic hydrocarbons extracted from the purple Treak Cliff 
Cavern fluorite. Same conditions as Fig. 26 (a, b) 

(a) Sample I-F sonicated once with benzene-methanol 
(b) Sample 11-F sonicated twice with benzene-methanol 
(c) Sample 111-F sonicated three times with benzene-methanol 
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Fig. 32.-Aliphatic hydrocarbons isolated from the Millstone Grit crude 
oils. Same conditions as Fig. 26 (c) 

(a) Hardstoft Oil 
(b) Eakring Oil 
(c) Plungar Oil 
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as well as some carbonyl-containing compounds (Fig. 25 (4)). The aliphatic hydrocarbon 

fraction isolated from the extractable organic matter contains isomers ranging from C,, to 

C,, , and maximizing around nC,, (Fig. 33). Confirmatory mass s p e c t r o m e t ~  shows t h a  

the C,,, C i s ,  and C,, isoprenoid isomers are present (Pering and Ponnampemma: 19688, 

but phytane could not be detected. 

The infrared spectrum of the brown bitumen indicates that it is composed largely of 

aromatic and some oxygenated compounds (Fig. 25 (3)). However, its elemental compo- 

sition indicates that it is intermediate between aromatic and aliphatic in connposltion and 

contains moderate amounts of sulfur (Table 2). Low temperature pyrolysis of the insol- 

uble part of the brown bitumen yields a set of products whose combined infrared spectrum 

indicates the presence of a complex series of oxygenated and sulfonated aronaatic cox- 

pounds (Fig. 25 (2)). Heating the bitumen to 160' C released hydrocarbons amiias to 

those extracted from the unheated sample (Fig. 34 (a)). Further heating to  260' C heleased 

a more complex, high-boiling mixture of hydrocarbons (Fig. 34 (b)), while l~eating 6s 3 1 0' C 

caused marked appearance of a new homologous series of hydrocarbons, which are probably 

cracking products (Fig. 34  (c)). Acrid, sulfurous smellihg material began forming at about 

' 
180' C and thus was concentrated in the 270' C fraction. This material eluted from an 

alumina column only with methanol, suggesting that the sulfur-containing compounds are 

very polar. 

Elaterite Oil 

Moderately strong absorption in the carbonyl and long-chain methyl regions of the 

infra-red spectrum of the Elaterite oil suggests that it is composed primarily of aliphatic 

hydrocarbons and carbonyl compounds (Fig. 28 (1)). This composition is si~pported by 

elemental analysis of the oil, which shows the highest percentage of hydrogen of the threc 

bitumens (Table 3). About 1% of the aliphatic hydrocarbons are unsaturated and yreld 





T B L E  2 

ELEMENTAL COWOSITION OF THE TMREE BI ENS IN THE WNDY KIVOEL DEPOSIT 

Brown Bitumen Black Bitumen Elatedte Oil 

C 87.91 86.16 84.30 

N 9.88 7.43 12.71 

N 0.07 0.53 0.86 

S 1.64 1.01 0.47 



Fig. 34.-Aliphatic hydrocarbons extracted from the brown bitumens after 
pyrolysis. Same conditions as Fig. 26 (c) 

(a) After heating to 165' C 
(b) After heating to 260' C 
(c) After heating to 3 10' G 
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an infrared spectrum absorbing at 965 cm"' , which is indicative of trans-substituted 

double bonds. The saturated hydrocarbons are a complex mixture of predominantly high 

molecular weight isomers which are very similar to those isolated from the black bitumen 

(Pering and Ponnamperuma, 1968). 

Bhck Bihmen 

The infrared spectrum of the extractable material in the black bitumen characterizes 

it as a mixture of aromatic, aliphatic and oxygenated compounds (Fig. 28 (3)), while the 

insoluble fraction is predominantly aromatic (Fig. 28 (4)). The high degree of aromaticity 

of this bitumen is also indicated by its elemental composition, which shows the lowest 

percentage of hydrogen of the three bitumen samples (Table 2). The aliphatic hydro- 

carbons isolated from the bitumen are a complex mixture of high molecular weight isomers 

which cannot be resolved on existing gas chromatographic columns (Fig. 35). The most 

striking characteristic of this mixture is its lack of a definitive homologous series of 

straight-chain isomers. 

Dbcaassion 

Field geologic relationships, as well as petroleum migration and accumulation patterns 

in this area suggest possible sources for the bitumes at Windy Knoll. The black bitumen, 

which is consistently associated with calcite in the main deposit, resembles the black- 

colored organic matter which is distributed throughout the limestone as tiny particles and 

which concentrates in masses as the carbonate matrix dissolves or recrystallizes. Black 

bitumen of this type has been observed in limestone hosting the Mississippi Valley ore 

deposits (Brecke, 1962) where it is concentrated in a dark zone alorlg the lower contact of 

fluorite ore with the host limestone, and as halos where the bitumen was displaced into 

pores and voids in the banded ore. 



Fig. 35.-Aliphatic hydrocarbons extracted from the black bitumen 
(a) same conditions as Fig. 26 (b) 
(b) same conditions as Fig. 26 (c) 





The liquid bitumen, or Elaterite, may well be an analogous, but highly nlobile 

fraction which concentrates in structures channeling migrating fluids through the Birne- 

stone. Vacuoles of a similar, but solid, green bitumen in the limestone fragments suggest 

that the limestone hosting this deposit may have been very bituminous, and that part 

of the oil may have a very local origin. 

The brown bitumen, which was apparently extruded into pre-existing limestone 

cavities, could have migrated from the overlying Edale Shale as did oil elsewhere in the 

Millstone Grit rocks. Preserved flow structures in this bitumen indicate that it was a viscous 

fluid at the time of deposition: the striking shape of the rods brings to mind the behavior 

of oil entering a water saturated porous rock. In this interface phenomenon known as 

"fingering," fluid migrating in the porous medium has a front of protruding streamers 

of fluid trending perpendicular to it (Collins, 1961). A somewhat similar movement 

involving the brown bitumen might have resulted in "fingers" which solidified to rock. 

The orientation of the pockets of rods to  each other might be divergent because large 

fragments in addition to fine grained material were involved. 

The organic compounds in the mineral fluorite might be considered a key to the effect 

of the hydrothermal fluids on the organic matter, as these represent the compounds in solu- 

tion with which the fluorite was in contact at the time of crystallization. The distribution 

of hydrocarbons in this mineral is remarkably similar to that of the hydrocarbons in the 

Castleton Edale Shale (purple fluorite) and to that of the limestone (white flusrite). The b-r.- 

modal distribution pattern observed in the purple fluorite subjected to minimal crushing 

suggests that sequential mixing of the hydrocarbons from both sediments has occurred, but 

there is no evidence that the hydrocarbons have been otherwise altered. The apparent highly 

polar nature of the total extractable organic matter in the fluorite might be due to a chemical 

alteration process, such as oxidation or hydrolysis; but just as likely, it may be due to  

selective adsorption of oxygen-containi~g compounds onto the fluorite crystal surfaces. 



The changes in organic matter caused by simple migration from a source rock to a 

secondary deposit are still controversial (Welte, 1965; Baker, 1960), but some changes 

that may have occurred in the Castleton area can be indirectly defined by cornparang the 

Millstone Grit crude oils with the Edale Shale organic matter. Differences between the 

composition of the Hardstoft and Eakring oils and the Castleton shale suggests that the 

main transformation would be a selective loss of oxygen-containing and aromatic con-  

pounds to yield a paraffin-rich mixture. Small losses of higher molecular weight hydro- 

carbons, or their breakdown to smaller molecules in the reservoir, are possible explanations 

for the slightly higher content of volatile hydrocarbons in these oils relative to the shale. 

The seemingly anomalously high branched-cyclic isomer content of the Plungar crude oil 

may signify that additional alteration processes can occur, but this composition change 

could also be due to lateral facies changes in the source rock. For instance, the hydro- 

carbons from the Raper Mine shale also exhibit an increase in branched-cyclic relative 

to straight-chain isomers. 

The chemical characteristics of the brown bitumen agree well with the geologic and 

chemical evidence for its origin. The distribution pattern of the bitumen aliphatic hydro- 

carbons closely resembles that of its postulated source rock, the Edale Shale, as well as 

those of the Millstone Grit oils. The originally high viscosity of the biturnerr suggests thattit 

did not migrate far enough to  lose the more asphaltic components. Hydrothermal fl~xsds ap- 

parently interacted with this bitumen simultaneously with or just after it had soliciif~ed. but 

before the bitumen became coated with oil that would have inhibited adhesive crystal growth 

on its solid surface. As with the fluorite, this interaction had no effect on the aliphatnc hydro- 

carbon distribution patterns. However, these fluids could have caused an increase nn the sate 

of auto-polymerization of the then viscous vitumen to such a point that concurrently fsrmang 

flow structures were preserved in the hardening material. Since this bitufnen is stnlE seactnve 

to acidic solutions, an acid-catalyzed polymerization could be postulated. 



If the brown bitumen is classified according to its physical properties, it is a 

"pyrobitumen" (Table 3). A property often used in characterizing bitumens accolrd~ng to 

this classification is their N/C ratio (Table 4). On this basis, the brown bitumen resembles 

Albertite, another bitumen which occurs in shale (King, 1963). The main difference be- 

tween these bitumens is that the Albertite is black: perhaps it represents a more advanced 

polymerization product than the brown bitumen. 

The general chemical characteristics of the black bitumen and the Elate;ate are t 

which would be predicted on the basis of geologic evidence that they are derived from the 

Lower Carboniferous Limestone. According to their physical properties (Table 31, the 

Elaterite resembles a "petroleum" or "mineral wax," and the black bitumen a "non- 

asphaltic pyrobitumen"; and on the basis of their H/C ratios, they are similar to ozocerite 

and a coal-type substance, respectively. These two classifications conform welI With the 

cortcept that these bitumens represent liquid and solid fractions of the limestone organic 

matter. 

The distribution patterns of the aliphatic hydrocarbons isolated from the black 

bitumen and the Elaterite are essentially the same, and are strikingly different from those 

extractable from the limestone around Castleton. This implies that the hydrocarbons, 

which presumably are derived from the limestone, have been altered. Since it has already 

been shown that hydrothermal fluids did not alter aliphatic hydrocarbons elsewhere in 

this area, it seems reasonable to exclude hydrothermal alteration from consideration here. 

A possible explanation is that the alkanes have been degraded by bacteria. Soil 

bacteria are known to alter crude oils by decreasing the n-paraffin content (Davis, 1967) 

and specific evidence for alteration of petroleum in the reservoir has recently been ae- 

ported (Winters and Williams, 1969). Gas chromatograms of the aliphatic hydrocarbons 

from unaltered and altered parts of the oil fields studied by Winters and Williams show 

that complex distribution patterns similar to those in the black bitumen and Elaterite 





TABLE 4 

THE W/C ATOMIC RATllO OF THE BITUMENS AT WINDY KNOLL 
AS COMPARED WITH SOME OTHER NATURAL BI 

Hydrocarbon 
1. Ozocerite 
2. Elaterite Oil 
3. Ingramite 
4 .  Wurtzilite 
5. Gilsonite 
6. Brown Bitumen 
7. Albertite 
8. Black Bitumen 
9. Coal 

10. Bituminous Coal 
1 1 .  Anthracite 

W/C Atomic Ratio 
1.89 - 1.96 

1.81 
1.62 

. 1.59 - 1.60 
1.42 - 1.47 

1.35 
1.24 - 1.32 

1.04 
0.99 
0.80 
0.56 

Source: Adapted from Hunt, Stewart, and Dickey, 1954 

are generated. Another aspect of these altered oils is that they contain up to four or h e  

times as much nitrogen as the unaltered oils. Winters and Williams suggest that such high 

nitrogen content is due partly to amino acids derived from proteinaceous material normally 

produced by paraffin-oxidizing micro-organisms. Nitrogen compounds in petroleum are 

usually associated with aromatic molecules such as porphyrins or high molecular weight 

asphaltenes, yet the highest concentration of nitrogen in the Windy Knoll deposit occurs 

in the most paraffinic bitumen, the Elaterite oil, which contains more than eight times 

as much nitrogen as its paraffinic analogue, ozocerite (Table 5). 

Another indication of bacterial activity is the presence of unsaturated hydrocarbons 

in the Elaterite. Unsaturated hydrocarbons are produced during microbial metabolisrn~ 

and have been associated with the presence of microbes in other naturally occun-ing 

organic matter (Douglas, Eglinton and Maxwell, 1969). Polymerization of unsaturated 

hydrocarbons could explain the high molecular weight distribution pattern which is so 

characteristic of the saturated hydrocarbons in these two bitumens. Furthermore, the 

elasticity for which the Elaterite is so well known could be the result of cross-linking of 

the unsaturated material as it polymerizes, or  it may be the property of a residual biologic 



TABLE 5 

gUIE NITROGEN CONTENT OF S 
COWARED WlTW TMAT OF 

Bitumen Nitrogen Content 
Elaterite 0.86 
Black bitumen 0.53 
Brown bitumen 0.07 
Ozoceritel 0.10 
Bell Creek Crude2 

Oil Unaltered 0.04 
Altered 0.14 

'Hunt, Stewart, and Dickey (1954) 
Williams and Winters (1 969) 

elastic gel produced by the bacteria. The brown bitumen would not be affected by this 

type of alteration because it is impervious to fluids, while the black bitumen, which is 

a composite of fine particles, is quite permeable and would be affected. Althsu& it is con- 

ceivable that alteration of the hydrocarbons took place during suberial erosion of the lime- 

stone in late Carboniferous or Permian times, it seems doubtful that the geolo@caBly 

fragile, unsaturated hydrocarbons would survive. These considerations, coupled with the 

fact that conditions in the deposit are now conducive to microbial growth, suggest that 

alteration of the bitumens is a very recent phenomenon, and may still be taking place. 

Conclusions 

A postulated geologic and geochemical history for the bitumen deposit at Windy 

Knoll which is compatible with the findings of this study is summarized below. 

A. Fluids began migrating along the boulder bed unconformity possibly because a 

fluid pressure gradient developed at Odin Rake (Fig. 36 (a)). 

B. These fluids partially dissolved the limestone along the unconformity, releasing 

organic matter from the carbonate matrix. As the fluids passed through the topogaapbic 

high at Windy Knoll, the oil fraction was trapped along the top and the black bitumen, 





being heavier than water, concentrated along the bottom (Fig. 36 (b)). 

C. Asphaltic bitumen relehsed as the Edale Shale compacted began flowing into 

the same trap around fragments of undissolved limestone and concentrated between the 

other two bitumens in the aqueous layer. Warm hydrothermal fluids, coupled perhaps 

with high hydrogen sulfide concentrations in the shale connate water, catalyzed auto- 

polymerization of this bitumen and then began to precipitate marcasite, fluorite, etc., 

around the solidified forms (Fig. 36 (c)). 

D. Erosion of the Edale Shale and recent quarrying of the limestone exposed the 

Windy Knoll deposit. Exposure to the atmosphere, and flow of ground water th roud~ the 

bitumen created favorable conditions for bacterial growth in the more permeable forms 

(Fig. 36 (d)). 

This geologic history is quite different from that previously postulated by Mueller. 

The history presented here is based in part on the fact that little chemical a r  geologic evi- 

dence for thermal alteration processes could be found, and in part on indirect evidence 

that viable orga~lisms are an active part of the present geologic environment of Windy Knoll. 

It is difficult to say at this time to what extent these results can be applied to other bitumens 

such as those outlined in Chapter 11. However, they do suggest that microbial alteration 

processes in hydrothermal environments deserve much more attention than they have 

attracted id the past, and that perhaps too much emphasis has been placed on purely Bl~errnae 

reactions. 



SYNOPSIS 

Several hydrocarbon characteristics which might s&e as criteria for the abiogenic 

origin of naturally occurring organic matter have been presented in this study. These were 

dehned by reviewing the types of hydrocarbons reported in the literature to be synthesized 

from simple, carbon containing gases and selecting the characteristics of these types which 

differ from those commonly observed in geologically occurring hydrocarbons of biologcal 

origin. To summarize, these characteristics are: 

1. A complex mixture of aliphatic hydrocarbons predominantly composed of cyclic, 

highly branched isomers and exhibiting a symmetrical, hump-like gas ch roma tagap~c  

distribution pattern. 

2. A simple mixture of aliphatic hydrocarbons which yields a gas chromatographic 

distribution pattern marked By a repetitive sequence of monomethyl branched paraffin 

and olefin isomers between intense n-alkane peaks, the intensity of all the peaks decreasing 

with molecular weight. 

3. A mixture of aromatic hydrocarbons consisting predominantly af two and three 

ring arenes containing an even number of carbon atoms. 

4. A positive correlation of the C/H ratio of the hydrocarbons (all types11 with 

synthesis temperature. 

If the abiogenicity of a particular organic mixture can be established, the aliobie listed 

hydrocarbon characteristics appear also to be capable of providing information about the. 

conditions under which the mixture was synthesized. It appears, for instance, that the very 

complex mixtures of isomers (characteristic 1)  are consistently the product of syntheses 



involving methane as the main carbon containing reactant. On the other hand, simpler 

mixtures iri which n-alkanes predominate (characteristic 2) are associated with syntheses 

based on the reactant, carbon monoxide. The presence of aromatic hydrocarbons composed 

predominantly af even numbers of carbon atoms may likewise suggest that methane was 

the original reactant, but more needs to be known about the types of aromatics produced 

frdm carbon monoxide before this conclusion can be considered too seriously. Addtisrnal 

information concerning the temperatures involved in a particular synthesis appear to be 

furnished by the relative distributions of the various hydrocarbon types. For instance, the 

curve in Fig. 1 suggests that if the hydrocarbons in an organic rhixture are Only aromatic, 

the mixture was probably synthesized at temperatures higher than 500" C; hol~ever, i f  it 

contained exclusively aliphatic isomers, it could be concluded that temperatures never or 

rarely exceeded 400" C. 

The latter half of this thesis study has been concerned with assessing the usefulness 

of the aliphatic hydrocarbon charhcteristics in determining the origin of bitumens in 

unusual geologic environments. At first, the results of the brief survey of unusual bitumens 

seems to suggest that the characteristic based on a complex mixture of cyclic afiphatic 

hydrocarbon isomers is far too common to  apparently biologically derived bitu~nedls to 

be a useful criterion for abiogenicity. However, the detailed study of the Windy Knoll 

bitumen deposit shows that the resemblance between these apparently altered biological 

hydrocarbons and the synthetic mixtures can be superficial; although both the Windy 

Knoll and the synthetic hydrocarbons are very complex mixtures of predominantly cyclic 

isomers, those at Windy Knoll consist of much longer chained, less branched nlolecules; 

contain unsaturated bonds; and yield a very assymetric, hump-like distribution pattern 

that maximizes at much higher molecular weight ranges than does the synthetic material. 

Other evidence is presented that indicates that the complex hydrocarbon isomer rnixti.1.e~ 

at Windy Knoll are the result of microbial oxidation of these bitumens, rather than 06 



resses alterations associated with the moderately warm temperature geologic ore fol-ming pro-. 

known to  have been active in the area. 

Thus, on the basis of the Windy Knoll study alone, it appears that the cl~aractesistics 

of synthetic aliphatic hydrocarbons still can be considered useful in indicating abiogenicity 

providing that close attention is paid to  the subtle differences which can exist between 

them and altered hydrocarbons of biological origin. And, close attention is paid to the 

possibility of rriicrobial growth in the organic matter in question. But, similar or even more 

detailed studies of the other bitumens containing ~ompkex mixtures of aliphatic hydro- 

carbons are necessary to show whether or not the findings at Windy Krloll can be generalized 

to explain and describe all such occurrences. 

A useful example of the way information provided by hydrocarbons can be interpreted 

is available in the recent findings concerning the Murchison carbonaceous chondrite (Kven- 

volden, et al., 1970). 

The abiogenic origin of this organic matter can be fairly well established on the basis of 

carbon isotope ratios, the presence of racemic, as well as non-protein amino acids, and the 

following hydrocarbon characteristics. 

1. The alkanes are predoniinantly mono and bicyclic isomers with short chain bralaches 

which upon gas chromatography, yield a distribution pattern resembling a Gaussian cusue 

2. The aromatic hydrocarbons are predominantly two and three ring arenes cornpased 

of even numbers of carbon atoms (Pering and Ponnamperuma, 197 1 ). 

3. The approximate ratio of the types of hydrocarbons (aliphatic, aromatic and UP- 

saturated) is 10:9: I .  

The evidence presented in this thesis suggests that these findings can be interpreted to 

indicate that methane was probably the most predominant carbon containing reactant from 

which organic matter in the meteorite was formed. This seemingly simple piece of informa tlorz 

is important because evidence from previous meteorite studies (largely invohiing contamiilated 



samples) suggested that a Fischer-Tropsch reaction involving carbon monoxide was the 

principal sdurce of the organic matter. The third observation listed above suggests that 

the temperature history of this methane rich reaction mixture involved brief exposures 

to temperatures perhaps as high as 900' C, but also involved considerable residence time 

at lower temperatures since over half the hydroc&bons are aliphatic. (A plausible lower 

limit for the temperature might be set at 300' C since only the Fischer-Tropsch type 

reactions and irradiation syntheses yield hydrocarbons at lower temperatures.) This 

information provides a new starting point for designing model synthesis expefiments 

to replicate the extraterrestrial processes which formed these compounds, And these 

experiments in turn will surely add to  our capability to recognize the chemical chaaxter- 

istics of abiogenic organic material. 



APPENDIX 

The amount of water which could be retained in the outer pbrtions of the earth, 

while other gases accumulated in the atmosphere, can roughly be estimated if it is assumed 

that the surface of the earth was as cool, or cooler than it is today (Meadows, 1970). A 

reasonable form for any retained witer would be either as a serpentine-like mixieral such 

as chlorite or as amphiboles, such as hornblerlde (or biotite) [(Mg,Si,O,,)(H,Q), : 5522g/msle; 

and NaCa2(Mg,Fe,A1),(Si,Al)8023(H20): 800 klmole, respectively] . 

The amount of water which would have to be retained as hydrated silicates wouJd be 

similar to that estimated by Rubey for the total amount of water released on the surface of 

the earth: 1.5 X 1 02, g (Rubey, 195 1). If serpentine were the predominant mineral, the 

amount of rock necessary to retain this amount of water would be: 

1 .s x 1 02, H ~ O  
(552 g/mole) = 1 1.4 X lo2, g rock 

72 g H 2 0  / mole rock 

Or, if hornblende wete the predominant mineral, the analogous computation would yield 

, 6.2 X 10" g rock. 

If it is assumed, for the purpose of calculation, that this rock is distributed as a shell 

around the earth, the thickness of the equivalent slab will provide an estimate of the depth 

of rock necessary to retain this amount of water, as: (area)(height)(density) - mass of rock 

area r surface of the earth. For serpentine: 

(5 X 10' cm2 )(h cm)(3 g/cc) s 1 1.4 X 1 02, g 

and the thickness of the shell 7.6 Km. For hornblende: 

(5 X 10'' cm2)(h cm)(3.2 g/cc) r 6.7 X g 

and the thickness of the shell r 42.4 Km. Whether or not such depths are reasonable depends, 

of course, on the thermal gradient in the earth at this time. These calculations simply s % ~ o w  



that it is possible that all water was initially retained as a hydrated layer perhaps 25 Krn 

thick and composed of about 50% serpentine and 5Wo hornblende. 
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